
AWtoolbox: Characterizing Audio Information
Using Audio Words

Chin-Chia Michael Yeh, Ping-Keng Jao, and Yi-Hsuan Yang
Research Center for IT Innovation, Academia Sinica, Taiwan

{mcyeh, nafraw, yang}@citi.sinica.edu.tw

ABSTRACT
This paper presents the AWtoolbox, an open-source software
designed for extracting the audio word (AW) representation
of audio signals. The toolbox comes with a graphical user
interface that helps a user design custom AW extraction
pipelines and various algorithms for feature encoding, dic-
tionary learning, result rectification, pooling, normalization
and others. This paper also reports a benchmark comparing
eight AW representations computed by the toolbox against
state-of-the-art low-level and mid-level timbre, rhythmic and
tonal descriptors of music and sound. The evaluation re-
sult shows that sparse coding (SC) based AW represen-
tation leads to very competitive performances across the
three tested sound and music classification tasks. AWtool-
box is available for download at http://mac.citi.sinica.
edu.tw/awtoolbox.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Multi-
media Information Systems, Sound and Music Computing

Keywords
Audio feature; audio word; vector quantization; sparse cod-
ing; sound classification; music auto-tagging

1. INTRODUCTION
Representing audio information in a symbolic and text-

like fashion analogous to the bag-of-words feature prevalent
in text classification is not a new topic. The classic vector
quantization approach represents a series of audio feature
vectors extracted from an audio signal by the occurrence of
codewords in a pre-built dictionary (codebook), leading to
the so-called audio word (AW) representation for the entire
signal [9, 12]. Comparing to conventional audio features, an
AW representation is characteristic of its ability of symbol-
izing any local audio event as a codeword, its flexibility of
using an arbitrary large number of codewords learned from
a corpus of audio data in an unsupervised fashion, and its
light dependence on domain knowledge for feature design.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MM’14, November 3–7, 2014, Orlando, Florida, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3063-3/14/11 ...$15.00.

http://dx.doi.org/10.1145/2647868.2654989 .

input rectificationencoding pooling

input encodingpooling pooling

input encodingencoding pooling

(a)

(b)

(c) pooling

Figure 1: Three examples of AW extraction pipeline.

Therefore, it has been considered an powerful alternative to
conventional hand-crafted audio features.

However, due to the advancement of AW encoding and
dictionary learning algorithms [2,11,13,17,19], it is not easy
to keep track of different proposals of AW extraction algo-
rithms and make comprehensive comparisons. For exam-
ple, sparse coding (SC) has received considerable attention
in recent years and its variants have been used extensively
in various audio-related research [4, 14, 15]. Post-processing
methods such as encoding result rectification and normaliza-
tion [3,7] have also been claimed important. Because of the
lack of a standardized implementation of the related algo-
rithms under a unified framework, it is difficult to compare
the results reported in different works and gain insights.

In light of this, we present in this paper the AWtoolbox,
an open-source graphic user interface application intended
to facilitate the implementation and development of vari-
ous AW extraction pipelines. We also report a benchmark
comparing the performance of various AW representations
calculated by the toolbox and conventional audio features
for three different sound and music classification tasks.

2. AWTOOLBOX OVERVIEW
We define five atomic functional layers of AW extrac-

tion: input, encoding, rectification, pooling and other,
whose details are presented later. As Figure 1 illustrates,
different AW representations can be obtained by not only
using different algorithms for each layer, but also cascading
the functional layers in different ways. The same layer can
be applied multiple times, using not necessarily the same
algorithm each time. It is this versatility of the AW rep-
resentation that makes it important to allow the users to
define the number and order of these layers on their own. In
a nutshell, with the proposed toolbox, extracting a custom
AW representation can be done with the following steps:

• Designing: Users can graphically design the process
by creating and arranging various kinds of layers for
generating the desired AW representation. For visual-
ization purpose, layers are color coded based on their
types. For instance, the input layer is colored black
and the pooling layer is colored light blue.

• Dictionary learning: Users can either provide a pre-
vious built dictionary or prepare a corpus for con-

Figure 2: An screenshot of the graphical user interface of AWtoolbox.

structing the dictionary. The dictionary and the cor-
responding user-specified design can be saved for later
use.

• Audio word encoding: When the desired dictionary
is trained or selected, all the audio clips under the
input directory will be encoded to generate the AW
representation once the “Encode” button is pressed.

Figure 2 shows the graphical user interface of AWtoolbox.
Currently, AWtoolbox is only available for the Windows
platform. It is written in C#, with .NET assembly built
from MATLAB codes for the underlying algorithms. The
C# andMATLAB source codes are distributed under GPLv3
license. Please visit AWtoolbox’s website for example work-
flow on AW extraction.

The input layer is the first layer in any AW extraction
pipeline, transforming an input audio stream into a series of t
frame-level feature vectors that are further processed in sub-
sequent layers. Low-level feature representations applica-
ble here include log power spectrum (SPEC), Mel-frequency
cepstral coefficients (MFCC), sonogram, and chromagram,
among others, extracted with the frame rate and hop size
specified by a user. While MFCC-based AWs have been
found effective in both audio and video classification prob-
lems [9, 12], it has been reported [15] that sparse coding
works better with primitive features (e.g. SPEC) instead
of sophisticated features because primitive features preserve
more details of the raw signal.

The encoding layer converts an input vector (e.g. MFCC)
x ∈ R

m into the encoding result α ∈ R
k using a dictionary

D ∈ R
m×k and an encoding method, where k denotes the

number of codewords in D. When there are t input vectors
from an audio clip, we encode each vector individually. This
involves the specification of an encoding algorithm and a
dictionary learning algorithm. If desired, encoding can be
applied multiple times, as Figure 1(c) depicts, to mimic the
structure of deep neural nets [4,13]. Specifically, we consider
the following four state-of-the-art encoding algorithms:

• Vector quantization (VQ) represents x by a one-
hot binary vector α according to the nearest codeword

dj ∈ R
m in D. Namely, only an αj is 1 and the rest

of α are 0, where j = argminp zp and zp = ‖x−dp‖22.
• Triangle coding (TC), a ‘soft’ variant of VQ [12],

obtains a real-valued α by αj = max{0, μ(z)−zj}, ∀j,
where μ(z) = 1

k

∑k
p=1 zp is the mean of these distances.

• Sparse coding (SC) represents the input signal by
a sparse combination of the dictionary codewords by
solving the following LASSO problem [2],

α∗ = argmin
α

1

2
‖x−Dα‖22 + λ‖α‖1 , (1)

where λ controls the balance between the reconstruc-
tion error ‖x−Dα‖22 and the sparsity ‖α‖1 =

∑ |αj |,
which is a convex relaxation of the l0 norm ‖α‖0 =∑ |αj |0. A recommended value for λ is 1/

√
min(m, k)

[11]. For the case of k � m, it has been shown that SC
outperforms VQ for audio classification problems [15].

• Modified LASSO screening coding (SCS) is a
variant of SC with much lower computational cost due
to a theoretically-justified mechanism to filter out code-
words not useful for reconstructing the input signal be-
fore solving Eq. 1 [17]. We adopt an algorithm tailored
for audio signals proposed in [8] and employ clip-level
rather than frame-level screening for better efficiency
in time and memory usage. With SCS, we can afford
using larger k for the dictionary.

As for dictionary learning, the following three widely-used,
unsupervised algorithms are considered:

• k-means generates a dictionary by using each cluster
center as a codeword after applying k-means clustering
to the training corpus. This algorithm is usually used
for VQ-based representation [9, 12].

• Online dictionary learning (ODL) learns a dictio-
nary by optimizing the following equation using stochas-
tic gradient descent [11],

D∗ = argmin
D

1

N

N∑
n=1

(
1

2
‖x(n) −Dα(n)‖22 + λ‖α(n)‖1

)
,

(2)

where N denotes the number of low-level feature vec-
tors in the training corpus and n indexes the training
instances. Variants of Eq. 2 that consider other cost
functions such as non-negativity, group sparisty and
structure sparsity have also been proposed [2].

• Random exemplar extraction (REE) randomly
extracts k examples from the training corpus and di-
rectly uses the extracted examples as codewords for
the dictionary. Therefore, it bypasses the computa-
tional cost involved in clustering or solving Eq. 2. It
has been found that using such a random dictionary is
effective when the dictionary size k is large [8].

The rectification layer applies rectifying non-linearity
to the encoding result for improving representation power
[3].

• Absolute value simply applies the absolute value func-
tion to all the elements of the input to this layer.

• Polarity splitting splits the positive and negative
elements of the input data into separate ones and con-
catenates them after changing the sign of the negative
ones [3]. For example, as Figure 1(a) shows, when the
input is the time-varying encoding result A ∈ R

k×t,
the output of polarity splitting would be Â ∈ R

2k×t,
Â = [max{0,A}T, max{0,−A}T]T.

The pooling layer summarizes a time-varying vector se-
quence by aggregation operators such as taking the mean
or maximum or by other advanced multi-scale pooling tech-
niques such as temporal pyramid pooling [7]. Pooling can be
done either in the clip-level or in the segment-level (a seg-
ment is a subset of a clip consisting of multiple consecutive
frames), and after or before the encoding layer. For exam-
ple, in Figure 1(a) the pooling layer combines the frame-
level encoding results A ∈ R

k×t to form a k-dimensional
clip-level feature vector (e.g. 1

t

∑
αi for the case of mean

pooling) that can be used for classification. Figure 1(b)
shows another example that pools the frame-level low-level
features into segment-level ones and uses the latter for en-
coding, which might improve the robustness of the AW rep-
resentation to small temporal distortion.

The other layer is added to accommodate other functions
related to AW extraction but do not belong to the other four
layers. We consider the following three algorithms:

• Normalization is important for AW representations.
For instance, it has been shown that taking the square
root of α (a.k.a. power normalization or probability
product kernel transform) improves the linear discrim-
inability of AW representations [12,19].

• Random sampling exploits the repetitive nature of
music signals and randomly samples (with replacement)
the frame-level features of an audio clip to reduce the
number of frames t to be encoded [19].

• Consecutive frame concatenation concatenates mul-
tiple vectors to capture temporal information [13]; can
be performed after the input or encoding layer.

3. BENCHMARK
To validate the effectiveness of the AW representations

in characterizing audio information, we compare eleven AW
and non-AW features for three fairly different audio classifi-
cation tasks. The features we consider include:

• SPEC: log-scale spectrum calculated with 1,024-point
and half overlapping frames.

• MFCC: 20-D MFCC computed for each frame and
aggregated by mean pooling. MFCC is included as
the baselines.

• AW-MFCC-VQ-REE is extracted by using MFCC
at the input layer, VQ and REE for encoding and dic-
tionary learning at the encoding layer, and mean pool-
ing at the pooling layer. The dictionary size is set to
k = 2, 048. A dictionary is constructed (in an unsuper-
vised fashion) from the training and test sets of each of
the three datasets, respectively, without assessing the
class labels. The other seven AW representations, such
as AW-MFCC-SC-REE and AW-SPEC-SCS-REE, are
extracted similarly but using different algorithms at
the input and encoding layers. However, an absolute-
value rectification layer is applied to SC and SCS
before pooling, because their encoding results have
both positive and negative values. In addition, as SCS
is more efficient than SC, we set k = 16, 384 for SCS
to evaluate the benefit of using a larger dictionary.

• MIR is a set of 177-D features representing the state-
of-the-art “hand-crafted” music/audio features calcu-
lated by using the MIRtoolbox [10]. It includes two
measures of energy, five descriptors of rhythm (e.g.,
average tempo, pulse clarity and event density), 148
timbre/spectral descriptors (e.g. MFCC, spectral cen-
troid, flux, roughness, irregularity and zero-crossing
rate) and 22 tonal descriptors (e.g. pitch class profile,
key clarity and musical mode). It is considered as a
strong baseline in that it captures not only timbre but
also the rhythmic and harmonic aspects of music sig-
nals, whereas the AW representations we consider are
based on only spectral features (i.e. MFCC or SPEC).

Prior to feature extraction, all audio clips are converted to
22,050 Hz single channel waveform.
3.1 Audio Classification Tasks

We perform the benchmark using the following three data
sets to ensure the result is generalizable.

• FreeSound consists of 20,626 audio clips collected
from Freesound (http://www.freesound.org). Each
clip is manually labeled with one of the following five
categories: sound effect, soundscape, speech, in-

strument sample and complex music fragment [6]. As
the clips are annotated with mutually exclusive labels,
we formulate the problem as a multi-class classifica-
tion one and report the average classification accuracy
(ACC). We consider the first 30s for overly long clips
for feature extraction and use ten-fold cross validation
(CV) for evaluation.

• CAL is a subset of the dataset collected by Tingle
et al. [16] for music auto-tagging, which contains the
genre and acoustic annotation of music labeled by pro-
fessional music editors of the music service company
Pandora (http://www.pandora.com). With the 7dig-
ital API (http://www.7digital.com) we collect the
30s audio previews of 7,799 songs, spanning 140 genres
and sub-genres, such as classical, rock, teen pop,
motown, salsa, latin and deathcore metal. We con-
sider it as a multi-label problem and evaluate the pre-
cision for tag-based retrieval using the training/test
splits (akin to five-fold CV) defined by [16]. The per-
formance measures are mean average precision (MAP),
precision at rank ten (P@10) and precision at rank R
(P@R), R being the number of relevant clips [16].

Table 1: The results of the benchmark, with the top two results for each performance metric highlighted.

Feature Dimension
FreeSound CAL MER

ACC MAP P@10 P@R MAP P@10 P@R
MFCC 20 0.365 0.067 0.076 0.069 0.021 0.026 0.031
MIR [10] 177 0.551 0.153 0.188 0.164 0.043 0.079 0.065
AW-MFCC-VQ-REE 2,048 0.459 0.076 0.110 0.085 0.075 0.235 0.130
AW-MFCC-TC-REE 2,048 0.479 0.106 0.139 0.120 0.038 0.081 0.060
AW-MFCC-SC-REE 2,048 0.465 0.083 0.113 0.093 0.079 0.258 0.135
AW-MFCC-SCS-REE 16,384 0.450 0.074 0.105 0.082 0.105 0.314 0.154
AW-SPEC-VQ-REE 2,048 0.497 0.109 0.149 0.120 0.063 0.179 0.122
AW-SPEC-TC-REE 2,048 0.533 0.138 0.170 0.149 0.044 0.070 0.058
AW-SPEC-SC-REE 2,048 0.545 0.143 0.188 0.157 0.111 0.300 0.171
AW-SPEC-SCS-REE 16,384 0.530 0.120 0.164 0.135 0.111 0.323 0.162

• MER contains 31,427 30s audio previews labeled with
190 music emotion tags [18] by the crowd of last.fm
users (http://www.last.fm). These are the songs con-
sidered as most relevant to the emotion tags accord-
ing to the Tag.getTopTracks() function of the last.fm
API. We consider the subset of 43 emotion tags which
appear in the Affective Norm for English Words [1],
such as sad, lazy, relaxed, happy, romantic, fun

and angry, and evaluate the accuracy for tag-based
retrieval using the training/test split specified in [18].

We use the simple l2-regularized l2-loss linear support vector
machine (SVM) algorithm implemented by LIBLINEAR [5]
for classifier training and prediction. The SVM parameter C
is tuned by an inner CV on the training set. We use power
normalization for AW representations and z-score normal-
ization for the MFCC and MIR features.

3.2 Results
Table 1 shows the results of this benchmark, from which

the following observations can be made. First, generally
speaking MIR features and SC-based AW features achieve
the best results for all the three tasks, outperforming MFCC
by a large margin. Moreover, while MIR features perform
slightly better for the first two tasks, SC-based AW features
lead to significantly better precision than the rivals for the
MER task. This validates the effectiveness of an AW repre-
sentation in representing audio information, even though it
is based on only primitive spectral features randomly drawn
from an audio collection and is computed without exploiting
specific knowledge of the signal (i.e. music theories). The
P@10 for MER reaches 0.323, which shows out of the top 10
ranked songs for each tag on average more than 3 of them
are relevant. Second, by comparing the AW features, we see
that generally better results for the tasks we considered are
obtained by using SPEC rather than MFCC for the input

layer, and SC-based algorithms (i.e. SC and SCS) rather
than VQ or TC for the encoding layer. This shows the im-
portance for the AWtoolbox to accommodate a variety of
AW extraction pipelines to be experimented with by a user.
Finally, according to our evaluation it is sufficient to use
a dictionary of medium size (i.e. 2,048 for AW-SPEC-SC-
REE) instead of a large one. It takes around 17 seconds for
computing the AW-SPEC-SC-REE for a 30 seconds music
clip.

4. CONCLUSIONS
In this paper, we have presented the AWtoolbox to facil-

itate the use of various AW features in representing audio
information. The toolbox is characteristic of its flexibility in

designing new AW extraction pipelines and its expandabil-
ity in including new algorithms. The effectiveness of the re-
sulting feature representations have been validated through
three fairly different audio and music classification tasks. We
hope that the AWtoolbox can also be useful for other tasks
such as audiovisual video content analysis, audio-based du-
plicate detection (e.g. cover song identification), similarity
estimation, visualization, and reconstruction-related tasks
such as source separation and audio synthesis.

5. REFERENCES
[1] [Online] http://csea.phhp.ufl.edu/media/.
[2] F. Bach et al. Optimization with sparsity-inducing

penalties. FTML, 2012.
[3] A. Coates and A. Ng. The importance of encoding versus

training with sparse coding and vector quantization. In
ICML, pages 921–928, 2011.

[4] L. Deng and X. Li. Machine learning paradigms for speech
recognition: An overview. TASLP, 21(5):1060–1089, 2013.

[5] R.-E. Fan et al. LIBLINEAR: A library for large linear
classification. JMLR, 2008.

[6] F. Font et al. Audio clip classification using social tags and
the effect of tag expansion. In Semantic Audio, 2014.

[7] P.-S. Huang et al. Pooling robust shift-invariant sparse
representations of acoustic signals. In Interspeech, 2012.

[8] P.-K. Jao et al. Modified LASSO screening for audio
word-based music classification using large-scale dictionary.
In ICASSP, 2014.

[9] Y.-G. Jiang. SUPER: Towards real-time event recognition
in internet video. In ICMR, 2012.

[10] O. Lartillot and P. Toiviainen. A Matlab toolbox for
musical feature extraction from audio. In DAFx, 2007.

[11] J. Mairal et al. Online dictionary learning for sparse
coding. In ICML, pages 689–696, 2009.

[12] B. McFee et al. Learning content similarity for music
recommendation. TASLP, 20(8):2207–2218, 2012.

[13] J. Nam et al. Learning sparse feature representations for
music annotation and retrieval. In ISMIR, 2012.

[14] E. C. Smith and M. S. Lewicki. Efficient auditory coding.
Nature, 439(7079):978–982, 2006.

[15] L. Su, C.-C. M. Yeh, J.-Y. Liu, J.-C. Wang, and Y.-H.
Yang. A systematic evaluation of the bag-of-frames
representation for music information retrieval. TMM, 2014.

[16] D. Tingle et al. Exploring automatic music annotation with
“acoustically-objective” tags. In MIR, 2010.

[17] Z. J. Xiang et al. Learning sparse representations of high
dimensional data on large scale dictionaries. In NIPS, 2011.

[18] Y.-H. Yang and J.-Y. Liu. Quantitative study of music
listening behavior in a social and affective context. TMM,
15(6):1304–1315, Oct 2013.

[19] C.-C. M. Yeh et al. Improving music auto-tagging by
intra-song instance bagging. In ICASSP, 2014.

