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Abstract—There has been an increasing attention on learning
feature representations from the complex, high-dimensional audio
data applied in various music information retrieval (MIR) prob-
lems. Unsupervised feature learning techniques, such as sparse
coding and deep belief networks have been utilized to represent
music information as a term-document structure comprising of
elementary audio codewords. Despite the widespread use of such
bag-of-frames (BoF) model, few attempts have been made to
systematically compare different component settings. Moreover,
whether techniques developed in the text retrieval community
are applicable to audio codewords is poorly understood. To
further our understanding of the BoF model, we present in this
paper a comprehensive evaluation that compares a large number
of BoF variants on three different MIR tasks, by considering
different ways of low-level feature representation, codebook
construction, codeword assignment, segment-level and song-level
feature pooling, tf-idf term weighting, power normalization,
and dimension reduction. Our evaluations lead to the following
findings: 1) modeling music information by two levels of abstrac-
tion improves the result for difficult tasks such as predominant
instrument recognition, 2) tf-idf weighting and power normaliza-
tion improve system performance in general, 3) topic modeling
methods such as latent Dirichlet allocation does not work for
audio codewords.

Index Terms—Bag-of-frames model, music information re-
trieval, sparse coding, unsupervised feature learning.

I. INTRODUCTION

O VER the recent years, sparse coding (SC) and deep be-
lief networks (DBNs) algorithms have been utilized for

constructing the codebook for music [1]–[17]. Inspired by the
human’s sensory system, SC aims at forming codes that are
sparse in support (with most coefficients being zero) but are
sufficient to reconstruct or to interpret the input signal [1]. The
codebook of SC can be pre-defined using standard bases such as
wavelet, Gabor, or Gammatone functions [1]–[4], but can also
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be learnt from a collection of music signals using algorithms
such as matching pursuit and online dictionary learning (ODL)
[12], [18].1 In contrast, DBN is probabilistic, multilayer neural
network that processes information by multiple levels of trans-
formation and abstraction, as different areas of cortex in the
mammal brain perform [19]. The idea of DBN is to form a hi-
erarchical signal processing paradigm that mimics how people
organize and perceive music information.
Given a codebook, any acoustic feature vector can be re-

placed by the occurrence of codewords in the corresponding
music signal, leading to the so-called bag-of-frames (BoF) rep-
resentation of music [20]. This technique assumes that a vocab-
ulary consists of finite words and that documents are unordered
sets of word occurrences. Audio events local in time (e.g., guitar
solo or riffs) can be represented by different codewords in the
BoF model, instead of being smeared out as in the case of taking
mean or median pooling over the entire feature sequence [21],
[22]. Moreover, as the feature representation is text-like, one
can recast MIR as text IR and benefit from the lessons and tech-
niques that have been learnt and developed for text [23].
Although the codebook-based approaches have been shown

powerful alternatives to hand-crafted feature design for music
information retrieval (MIR) [17], little work has been done to
systematically compare the performance of different methods
on multiple MIR tasks. Instead of “reinventing the wheels,” we
report a comprehensive set of experiments that tried to evaluate
the performance of existing BoF-based methods as accurately
as possible. Moreover, many existing work adopted a “trans-
ductive learning” paradigm and assumed that the test set of the
target task is available during feature learning (e.g., [14]), which
is not always the case in practice. In view of this issue, we learn
the codebook from an external data set (i.e., 6,700 tracks from
USPOP [24]) that is disjoint from the data sets of the consid-
ered tasks, which include music genre classification [25], pre-
dominant instrument recognition [26], semantic annotation (i.e.,
auto-tagging) and retrieval [27].
In particular, this work has an explicit focus on studying the

analogy between text words and audio codewords, an issue that
has been poorly addressed before. Instead of simply counting
the frequency of occurrence of the codewords, we study the
influence of different keyword weighting schemes, using 25
different combinations of term frequency-inverse document
frequency (tf-idf) measures [23]. These measures enhance the
significance of terms that have high weight and occur sparsely
in the whole corpora. Although the idea of tf-idf term weighting

1Whether to favor a generic codebook or a codebook adapted to (i.e., learnt
from) the data has been found task-dependent [2], [8].
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TABLE I
COMPARISON OF BAG-OF-FRAMES BASED APPROACHES FOR MIR PROBLEMS; TR INDICATES TRANSDUCTIVE LEARNING

has been applied to BoF models before [28]–[30], only the
common variants of tf-idf has been utilized so far. Which
weighting scheme is most suited to describe audio codewords
deserves detailed assessments.
As audio codewords are usually computed from a single

or a limited number of consecutive frames (e.g., less than
0.5 second) [4], [5], [14], it is reasonable to argue that such
codewords correspond only to temporal audio elements or
particles, instead of basic semantic units that can be quantified
as words. Therefore, we are interested in extending the SC
paradigm by cascading two layers of abstraction [31], one at
the alphabet level (e.g., one frame), the other at the word level
(e.g., 5-second segment). In this way, it is possible to encode
multi-layer information as the DBN paradigm.
Moreover, probabilistic topic models such as latent Dirichlet

allocation (LDA) [32] and its variants have also been widely
used in text IR to uncover the hidden thematic structure in large
collection of documents. Such techniques also reveal lexical re-
lationship such as polysemy and synonymy.2 We are therefore
also interested in exploring the use of such probabilistic topic
modeling to audio codewords.
The paper is organized as follows. Section II reviews re-

lated work. Section III starts with an overview of the proposed
system and then goes into details of each system components.
Section IV is dedicated to text-like techniques such as tf-idf
weighting, latent Dirichlet allocation, and power normalization.

2Polysemy refers to a word that has multiple senses and multiple types of
usage in different contexts, whereas and synonymy refers to different words
that share a similar meaning) between words.

Section V describes the data sets, low-level features, and the
setup of the experimental parameters. Experiment results are re-
ported in Section VI, followed by discussions in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

BoFmodels have beenwidely used inMIR, as Table I shows.3

A classic approach to form an audio analogy of a word is by
clustering a collection of frame-level feature vectors and using
the cluster centers to form the codebook. This vector quantiza-
tion (VQ) technique has been widely used [39]. For example,
Riley et al. [28] compared three clustering algorithms for VQ
and found that means achieves competitive result with rela-
tively less computational cost. VQ has been applied to genre
classification and achieved 81.7% and 85.3% in ten-class clas-
sification for the GTZAN data set [30], [34] (both used trans-
duction learning). Seyerlehner et al. [33] proposed a multi-level
approach to accelerate VQ, whereas McFee et al. [35] used a
soft variant of means to reduce quantification errors. Other
single-layer codebook learning methods such as nonnegative
matrix factorization (NMF) [36] and GMM [37] and have also
been proposed, among others.
To the best of our knowledge, Lee et al. [5] reported the first

study that applies DBN to MIR problems. Using the features
learnt by DBN outperforms standard acoustic features such as

3In the ‘corpus’ column, ‘training split’ indicates the training set of the target
MIR task (e.g., genre classification) is used for dictionary learning. Moreover,
we use ‘TR’ (i.e., transductive learning) to indicate the case where the test set
of the target MIR task is also used for dictionary learning.
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TABLE II
SUMMARY OF AUDIO-WORD AND AUDIO-ALPHABET NOTATIONS

spectrogram and MFCC for both genre classification and singer
identification. Using a three-layer DBN, Hamel and Eck [6] ob-
tained 84.3% accuracy in genre classification for the GTZAN
data set. Many variants of DBN, such as convolutional DBN
[9], conditional DBN [15], and convolutional neural networks
(CNN) [40], [41], have also been utilized for MIR. Readers are
referred to [17] for a recent overview.
Despite the effectiveness of DBN, Hamel et al. [6] noted that

DBN requires large number of hyperparameters to be tuned
and possible longer training times. In contrast, efficient approx-
imated SC method such as predictive sparse decomposition
(PSD) has been developed [10]. Moreover, unlike DBNs, it is
easier to use pre-defined codebooks for SC, which has been
shown advantageous over learnt codebooks for tasks such as
multipitch detection [16] and drum classification [8]. For other
MIR tasks such as similarity estimation and auto-tagging, it
has been shown that the performance of DBN and SC is similar
[38] and [14].4 Therefore, we focus on the SC-based approach
in this paper.
People are interested in sparse representations or sparse

models, because they lead to a clear interpretation [12]. As
first demonstrated by Smith et al. [1], audio codewords learnt
by using the matching pursuit (MP) algorithm for sparse de-
composition show striking similarities to time-domain cochlear
filter estimates. Furthermore, as shown by Henaff et al. [10],
codewords learnt from Constant-Q representations (CQT) using
SC correspond well to the specific chords or pitch intervals
such as minor thirds, perfect fifths, sevenths, major triads, etc.
Therefore, in addition to the discriminative power, SC leads to
codewords that are better in interpretability.
Several SC algorithms have been utilized in the literature

for representing music information. For example, Henaff et al.
obtained 80% in genre classification for the GTZAN data set
(in a non-transductive, or inductive, scenario) by using PSD
[10]. Scholler and Purwins [8] found that using a gammatone
dictionary as exemplar codewords leads to better accuracy in
drum sound classification than the codewords learnt by using
matching pursuit [8]. Yeh et al. [13] found that using log-power
spectrogram for low-level feature representation and ODL
for feature learning leads to the best performance (84.7% for
GTZAN, in a transductive learning scenario), whereas learning
features from MFCC vectors using VQ does not perform well

4It has been argued that the main value of the codebook might be to provide
a highly overcomplete basis to which data are projected, and that the choice of
algorithms for feature learning does not always matter [42]. Sometimes, even
using random patches sampled from data as codewords can work well, as long
as the codebook size is big enough [34].

TABLE III
VARIANTS OF TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

(70.1%). However, using means for codebook learning but
SC algorithms such as LARS-lasso [43] for encoding, the
performance improves to 81.4%.5 This result implies that the
way the codewords are assigned may be more important than
the way the codebook is generated, which is in line with the
observations made in [42].
Two-layer SC has been proposed in our prior work [31]. Our

preliminary evaluation on GTZAN showed that the two-layer
structure leads to the best accuracy (85.7%) for the transductive
scenario, but the single-layer structure performs better (83.3%)
for the inductive scenario. In addition, when BoF features are
used, one can obtain result comparable to histogram intersection
kernel (HIK) SVM [44] using just linear SVM, which reduces
the processing time by more than 10 fold [31]. It has also been
found feasible to use a fixed-length window for the second-layer
music segmentation. The present paper adopts the findings of
[31] and investigates many more other design parameters (see
Table IV) for not only genre classification but more MIR tasks.

III. HIERARCHICAL FEATURE LEARNING FRAMEWORK

A. System Overview

Fig. 1 shows the flow diagram of the system we implemented
for BoF-based MIR. The system makes use of a music collec-
tion, which we coin as the “training corpus,” to build the audio
codebook. This involves multiple operations such as encoding,
pooling, weighting, and power normalization, which will be
described later. Given the training clips of a target MIR task,
the codebooks are used to obtain the BoF representation of the

5Different combinations of codebook generator and codeword encoder lead
to different encoding systems. For the conventional VQ it uses a winner-takeall,
nearest-neighbor approach for encoding, rather than sparse coding.
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TABLE IV
THE DESIGN CHOICES AND PARAMETERS EVALUATED IN THIS PAPER, TOGETHER WITH THEIR EMPIRICAL OPTIMAL SETTING

Fig. 1. The dual-layer feature learning framework with BoF model.

training clips, after which machine learning algorithms such as
SVM are employed to train a classifier that takes the BoF fea-
tures of test clips and performs classification. We adopted the
inductive learning scenario and used a training corpus that has
no overlap with both the training and test sets of the target MIR
tasks.
Specifically, the system begins with extracting frame-level

features such as spectrogram from the input music clip, which
is divided into segments of frames. It assumes that every seg-
ment contains the same number of frames and uses
to denote the feature vector for the -th frame of the -th seg-
ment of the clip, where is the size of the feature vector.
After a sequence of operations, the information contained in
the frame-level features is transformed and summarized as a
clip-level histogram denoted as , where is the number
of histogram bins, or the codebook size.
For the case of the conventional, single-layer scheme, we

constructed a codebook directly from the

frame-level feature vectors of the training corpus. As each code-
word lies in the same signal space as the acoustic
feature vectors, one can use encoding methods such as sparse
coding to express a feature vector as a linear combination

of the codewords, a procedure that effectively trans-
forms a datum in the signal space to the indexical space spanned
by the audio codewords.6 The clip-level BoF representation of
a music signal can then be obtained by summarizing the se-
quences of coefficients by temporal pooling functions such
as summing over time, leading to .
As for the two-layer structure, we performed encoding and

pooling in two levels: frame level and the intermediate seg-
ment level. The first-layer codebook is learnt
from the acoustic feature vectors, as done in the single-layer
scheme. However, this time is pooled over each segment
instead of over the entire clip, giving rise to
for the -th segment of the clip, in the case of mean pooling
(other pooling functions can also be used). The second-layer
codebook is learnt from such intermediate en-
codings pooled at the segment level. As each codeword in
is also in the -dimensional indexical space, one can express
as a linear combination , which essentially lies in

another indexical space. Finally, another pooling over leads
to the clip-level histogram .
Based the analogy between alphabets and words, we refer

to the (frame-level) codewords in as the audio-alphabets
and the (segment-level) codewords in as the audio-words,
respectively. Pooling audio-alphabet and audio-words features
over the entire clip leads to the clip-level bag-of-audio alphabet
(BoAA) and the clip-level bag-of-audio word (BoAW) ,
respectively. Please see Fig. 1 and Table II for a summary, in
which is a regularization term that will be described later.
BoAA and BoAW can be concatenated to form a more com-

prehensive BoF features. We refer to BoAA as single-layerBoF
(SLBoF) and the concatenation of BoAA and BoAW as double-
layerBoF (DLBoF) in the following discussion.

B. Codebook Construction

The codebook can be built from the acoustic feature vectors
or the pooled frame-level encoding , depending on the

6The term signal space here refers to the span of dictionary atoms constructed
by frequency spectrum basis whereas indexical space refers to feature vectors
that are actually combination coefficients rather than features directly extracted
from the signal.
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abstraction level. For simplicity, we refer to both and as
“features” in this subsection. A total number of three codebook
construction methods are considered.
1) Exemplar-Based Method: simply chooses a subset of fea-

ture vectors from the training corpus at random to form the code-
book, a strategy that has been shown feasible for tasks such as
denoising, face recognition [45], speech recognition [46], and
multipitch detection of polyphonic music [16]. As there is no
learning process, the computational cost is low, and it is easy
to update the codebook. In addition, semantic interpretation is
relatively straightforward for there is a one-to-one mapping be-
tween features and codewords.
2) The means Algorithm: generates a codebook by selecting

the cluster centroids among a collection of feature vectors as
codewords, assuming that the distribution of the features fol-
lows a Gaussian distribution around each codeword. For effi-
ciency, the mini-batch variant [47] is adopted.
3) Online Dictionary Learning (ODL): is a first-order sto-

chastic gradient descent algorithm proposed byMairal et al. [18]
to solve the following optimization problem,

(1)

where denotes the (observed) -th signal among a set
of signals, is the (unknown) encoding co-
efficients, , is a set of (unknown) convex matrices

satisfying , a constraint that is imposed to
limit the energy of the codewords, is a regulariza-
tion term that enforces the sparsity (here the norm) of the co-
efficients, and is a pre-set parameter for the trade-off between
the sparsity of and the representation accuracy.7 A natural so-
lution to this joint optimization problem is to solve for the two
variables and in an alternating fashion [18]: minimize one
while keeping the other fixed. The optimization of uses block
coordinate descent with warm restarts, which aggregates the
past information computed during the previous steps of the al-
gorithm. The optimization of involves a typical sparse decom-
position problem that is described in Section III-C1. Several op-
timization steps are made until convergence. The readers are re-
ferred to [18] for more details. Because of its low memory con-
sumption and computational cost, ODL is more scalable than
standard second-order matrix factorization algorithms such as
K-SVD [48].

C. Encoding Methods

Given the codebook, any input signal can be represented by a
linear combination of the codewords. The vector of combination
coefficients can be either sparse or dense, depending on how
the encoding algorithm manipulates the loss function and the
sparsity constraint, as described below.
1) -Regularized Sparse Coding (L1): The sparse coding

problem can be described as

(2)

7According to the classical normalization factor [18], is set to in this
work, where is the feature dimension of .

This problem is usually referred to as basis pursuit [49] or lasso
[50] in the literature. It can be solved efficiently by off-the-shelf
programs such as LARS-lasso [43].
2) -Regularized Dense Coding (L2): or the Tikhonov reg-

ularization problem, concerns with

(3)

This is the classic -regularized least-square error problem,
whose solution corresponds to the minimum energy one. The
use of -norms (or , where takes the abso-
lute values) with leads to dense solutions [12].
3) Top- Vector Quantization ( -NN): Conventional VQ per-

forms encoding by searching for the unit vector that is nearest
to the input feature vector in terms of Euclidean distance. In
other words, this procedure can be regarded as a special case of
a -regularized least-square error problem, with the constraint

(number of non-zero terms being only one). One ob-
vious extension is to find the -nearest unit vectors and take
multiple quantizers for encoding [35].8 This can be expressed
as

subject to (4)

and all non-zero elements in are assigned equal weighting in
this work. It reduces to conventional VQ when is set to one.
To avoid possible confusion with the codebook learning method
means or VQ, we denote this method as -NN.
4) Triangle means (tri-NN): is another soft version of con-

ventional VQ proposed in [51]. It compares the distance be-
tween the input feature vector with all the codewords and keeps
those codewords whose distance to the input vector is less than
the mean distance, or

(5)

where , is the mean of , and and
are the -th element of and , respectively.

D. Segmentation

It has been found that partitioning a music signal into short
segments, each spanning a few frames, and then generating fea-
tures based on the segmentation usually improves the accuracy
of music categorization [25]. These segments, coined as “tex-
ture windows” [25], correspond to the minimum amount of time
that is necessary to identify a particular music texture. One can
segment a song by boundary detection algorithms [52] and di-
viding the song into nearly homogeneous parts with variable
lengths. However, we followed [31] and segment a song with
a window of constant length to capture the information of both
homogeneous and inhomogeneous parts.

E. Temporal Pooling

Pooling is one of the most simple ways of aggregating time-
varying information [21]. In the two-layer architecture, pooling

8This extension is intended to reduce the errors of VQ, which happens if a fea-
ture vector has multiple and approximately equidistant quantizers (codewords),
leading to an unstable encoding [36]. This quantization error is more likely to
happen as the size of the dictionary increases.
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takes place in two stages: from multiple frames to a segment,
and frommultiple segments to a clip. In addition to sum pooling,
we also experiment with max pooling, which extracts the max-
imum values of each component over all feature vectors in the
time duration under consideration.
The effect of pooling methods on system performance has

been studied in computer vision and MIR before. While some
studies found it advantageous to use max pooling in the case
of sparse features [14], [53], others showed that in practice both
max pooling and sum pooling can be sub-optimal and that better
result can be achieved by something in between [54]. In [55],
max pooling is found suitable for sparse features through theo-
retical analysis, but its efficiency depends on other parameters
such as pooling cardinality and codebook sizes.

IV. TEXTUAL PROCESSING OF FEATURES

A. Term Frequency-Inverse Document Frequency (TF-IDF)

The tf-idf weighting is arguably one of the most important
and widely used concepts in text IR [23], [56]. The tf term em-
bodies the intuition that the more often a term occurs in a doc-
ument, the more it is representative of its content. In contrast,
the idf term puts emphasis on terms that occur in only a few
number of documents across the corpus and thereby suppresses
irrelevant terms such as function words.
Many variants of tf-idf weighting schemes have been pro-

posed, and each of them has specific properties [57]. As Table III
shows, we selected and compared the performance of 5 tf and
5 idf functions for BoF-based MIR, amounting to 25 possible
combinations. Among them, , represent the basic for-
mulations commonly applied in a variety of problems, ,

are two logarithmic variants, , , and are the
Okapi formulations [58], is a probabilistic variant, and

, are two information-theoretic entropy measures.
As a comprehensive presentation of the tf-idf terms is beyond
the scope of this paper, readers are referred to [56] and [59] and
the references therein for more information.9

B. Latent Dirichlet Allocation (LDA)

LDA is a generative model that is originally proposed for
topic modeling of texts [32]. In LDA, each document is assumed
to be generated by a series of probabilistic processes which are
controlled by several parameters. The model parameters can be
learnt by the expectation-maximization (EM) algorithm derived
from variational inference. Because audio codewords are text-
like features, it might be feasible to apply LDA to the audio
codewords and use the estimate of the topic distribution as the
final feature representation. In this context, a term refers to an

9We provide some information about these functions here: the logarithmic
operation in and is used to scale the effect of unfavorably high term
frequency in one document; Okapi BM25 is a famous function for ranking docu-
ments according to their relevance to a given search query [58]. The parameters

and , whose optimal values have been found 1.2 and 0.75 for
text IR, control the saturation rate of terms and document length normalization,
respectively; the term, which is derived from a probabilistic model, mea-
sures the ratio between the number of documents that do not and do contain a
term; both , reduce the importance of noisy (high entropy) terms.

audio word and a document refers to a piece of music in LDA
modeling.
LDA and tf-idf weighting cannot be applied together, because

the input of LDA has to be in the form (i.e., a co-occurrence
matrix that simply counts the number of occurrences of a term
in a document). As Fig. 1 shows, LDA and tf-idf weighting were
evaluated separately.

C. Power Normalization

Power transformation techniques are used in order to sup-
press anomalies of data, such as non-additivity, non-normality,
and heteroscedasticity. When the pooled features are far from
Gaussian distribution with non-additive error structure, this
operation helps normalize the data. Given an input feature
vector , the power normalization can be calculated
with , where refers to signum function and

is a parameter that is set to 0.5 in this paper according
to Jégou et al. [60]. In other words, the BoF features are square
rooted before being applied to a MIR task.

V. EXPERIMENTAL SETUP

A. Problems

1) Genre Classification: Musical genres are the main top-
level descriptors used by music dealers and librarians to or-
ganize music. Genre classification has also been extensively
studied [52]. We used the frequently used GTZAN data set in
this work.10 It is composed of 1,000 30-second clips covering
10 genres (blues, classical, country, disco, hip-hop, jazz, metal,
pop, reggae, rock), with 100 clips per genre. Although the cor-
rectness of the data set has been argued in recent papers (e.g.,
[61]), it provides a benchmark on which music classification al-
gorithms can be compared.
2) Predominant Instrument Recognition: Instrument recog-

nition is also related to music timbre. We made use of the data
set collected by the Music Technology Group (MTG) of Uni-
versitat Pompeu Fabra,11 which consists of approximately 2,500
excerpts of Western music labeled into 11 classes of pitched in-
struments (cello, clarinet, flute, acoustic guitar, electric guitar,
Hammond organ, piano, saxophone, trumpet, violin and singing
voice) and two classes of drums (drums and no-drums) [26].
The class labels are applied to the predominant instrument over
a 3-second snippet of polyphony music.
3) Auto-Tagging: Recent research has focused on building

detectors for tagging music with semantic labels such as genre,
style, mood, and acoustic qualities [52]. For this evaluation, we
used CAL500 [27],12 a collection of 502 Western popular songs
manually annotated with a lexicon of 174 pre-defined tags. The
length of a clip ranges from 3 seconds to more than 22 min-
utes. According to the common protocol in the literature [14],
we focused on a subset of 97 tags and evaluate the performance
for both semantic annotation (multi-label classification) and re-
trieval.

10http://marsyas.info/download/data_sets
11http://www.dtic.upf.edu/ ffuhrmann/PhD/data/
12http://mkl.ucsd.edu/dataset/cal500
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Fig. 2. Top five (from left to right) audio alphabets (first-layer codewords) most frequently used by the five selected genres in the GTZAN data set [25].

B. Preprocessing

Music signals were sampled at 22,050 Hz and cut into 46-ms
frames with 50% overlapping, after which the following low-
level short-time features were extracted.
• Log-power spectrogram (STFT) was obtained by applying
logarithmic scaling on the spectrogram. Given our sam-
pling rate and frame size, the dimension .

• Mel-spectrum was computed by wrapping the linear-fre-
quency scale into a nonlinear, perceptual-motivated Mel-
scale [52] by triangular filters, reducing to 128.

• Principal Mel-spectrum components (PMSC) was a PCA-
whitened feature of Mel-spectrum proposed by Hamel et
al. [21]. In addition to preserving the original dimension
of the Mel-spectrum, we consider one more variant that
reduces to 80 by dropping low-variance components.

We did not consider other features such as magnitude spec-
trogram, MFCC, and CQT for their sub-optimal performance
shown in recent BoF-based MIR studies [13], [14], [21].

VI. EXPERIMENT RESULTS

Table IV summarizes the algorithms and important parame-
ters we evaluated for the BoF-based feature representation of
music. According to the suggestions in [31], we set the default
values for the codebook sizes to 1024, and the length of the tex-
ture window (for segmentation) to 2.5 seconds. We used the
USPOP 2002 data set as the training corpus, which contains
over 6,700 30-second clips of pop music.13 This way, the code-
books used in the three MIR tasks are the same. Although the
USPOP data set might not be large enough to cover the uni-
verse of music, our evaluation shows that features learnt from it
already led to result comparable to state-of-the-art in the three
tasks, using just linear kernel SVM for classifier training [62].
For future work, it is straightforward to experiment with a larger
training corpus.
We began comparing the performance of SLBoF features

obtained from three types of codebooks and five encoding
methods. This is followed by comparisons of different pooling
methods, power normalization and low-level features. Next,
we moved on to the comparisons of different codebooks and
pooling methods for the two-layer method DLBoF. The size of

13http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html

first- and second-layer codebooks and the segment length were
also studied. Finally, various tf-idf functions and dimension
reduction methods are compared based on the DLBoF features.
Due to space limit, the evaluation was mostly done for genre
classification and instrument recognition. For auto-tagging,
we only evaluated the performance of the optimal settings for
SLBoF and DLBoF.

A. Evaluation of SLBoF

According to the common evaluation protocol, we used
10-fold cross validation (CV) for genre classification on
GTZAN and instrument recognition on the MTG data set [26].
1) Visualization: To provide a sense of the audio alphabets,

Fig. 2 shows the top five audio alphabets most frequently used
by five of the ten genres in the GTZAN data set. Each audio
alphabet is represented in the frequency domain. Please note
that the audio alphabets were learnt from USPOP using ODL
and then used to encode the clips in GTZAN using L1. It can
be seen that different genres show the different preferences of
audio codewords. For example, ‘blues’ and ‘metal’ prefer code-
words that are inharmonic, high-frequency, and large in spectral
variance, whereas ‘classical’ and ‘jazz’ prefer those with op-
posite qualities. This is reasonable as classical music is mostly
performed with much more pitched instrument than percussion
instruments and human voices.
2) Codebook Types & Encoding Methods: Figures 3(a) and

3(b) illustrate the average accuracy in genre classification and
predominant instrument recognition for pitched instruments,
respectively, using 60 different combinations of experimental
settings by codebook generation methods, encoding methods,
pooling methods (max or sum pooling) and power normaliza-
tion (taking square root or not). From the bold lines in both
figures, it can be seen that ODL generally performs better than
the other two dictionary learning algorithms. As for encoding
method, we see that ODL+L1 performs the best for both cases.
When sum pooling and power normalization are performed
(i.e., SUM+SQRT), it achieves 81.2% for genre classification
and 64.7% for predominant instrument recognition. The perfor-
mance difference between ODL and either means or exemplar
dictionaries is significant ( - , ) under
the two-tailed -test. Generally speaking, L1 outperforms other
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Fig. 3. Average accuracy of GTZAN and MTG datasets using different
codebooks (ODL, means, Exemplar), encoding methods (L1, 1-NN, 10-NN,
tri-NN, L2), pooling methods (max or sum), and power normalization (SQRT
or not power normalized).

encoding methods, regardless of pooling methods and power
normalization.
In Fig. 3(a), L1 is the best encoding method for almost all

cases. In contrast, in Fig. 3(b), L2 performs better than L1
for means- and exemplar-based codebooks. We note that L2
is the only method that generates dense BoF features among
the five encoding methods, but it is only inferior to L1. When
SUM+SQRT is applied, ODL+L1 is not significantly better
than ODL+L2 for genre classification ( , ).
It seems that dense BoF features can also be competitive.
3) Pooling Methods & Encoding Methods: From Fig. 3, we

can see that power normalization is generally helpful, and that
sum pooling usually performs better than max pooling. The
combination of SUM+SQRT leads to the best accuracy for ei-
ther genre classification or instrument recognition.
There seems to be a performance dependency between

clip-level pooling and encoding method. For 1-NN, 10-NN and
tri-NN, max pooling is generally better, whereas for L1 and
L2 max pooling is not always better. For genre classification,
max pooling is also effective; if power normalization is not
performed, max pooling performs slightly better than sum
pooling, for the case of ODL+L1 (79.3% vs. 76.0%). However,
for predominant instrument recognition, sum pooling is much
better than max pooling; the performance difference between
SUM+SQRT and MAX+SQRT is significant ( ,

) for the case of ODL+L1. When the baseline per-
formance is relatively low (e.g., instrument recognition), it is
advisable to use SUM+SQRT. In contrast, when the baseline
performance is high (e.g., genre classification), the effect of
pooling method and power normalization is less remarkable.14

14We have also experimented with median pooling [22], which takes the me-
dian values of codewords over time. However, results show that median pooling
is significantly inferior to sum or max pooling. For example, for ODL+L1, me-
dian pooling degrades the average accuracy 51.0% for genre classification. To
explain this, we should note that what BoAA features measure is the relative
“occurrence" of each audio-alphabets within one clip. If one specific audio-al-
phabet occurs for only 5 seconds in a 30-second clip, taking median values is
likely to eliminate the contribution of this audio-alphabet, whereas max pooling
or sum pooling does not.

TABLE V
PERFORMANCE COMPARISON ON GENRE CLASSIFICATION,
PITCHED INSTRUMENT RECOGNITION AND PERCUSSION
SOUND DETECTION (IN % ACCURACY) FOR DIFFERENT
CODEBOOKS AND POOLING METHODS FOR DLBOF

TABLE VI
PERFORMANCE COMPARISON ON GENRE CLASSIFICATION (IN % ACCURACY)

FOR DIFFERENT TF-IDF FUNCTIONS FOR DLBOF

B. Evaluation of DLBoF

We then evaluated the performance of DLBoF for genre clas-
sification and predominant instrument recognition (including
pitched and percussion), using the same codebook generation
methods for both the two layers. We fixed the encoding method
to L1 and adopted power normalization. Table V shows the re-
sults of different codebook generation methods, coupling with
different pooling methods at the segment- and clip- levels. For
example, SUM–MAX denotes segment-level sum pooling and
clip-level max pooling, whereas null–SUM indicates no pooling
at the segment level (i.e., SLBoF). We see that DLBoF greatly
improves the accuracy for pitched instrument recognition (from
64.7% to 67.4%); the difference between DLBoF and SLBoF is
significant. In contrast, for less challenging tasks such as genre
classification or percussion instrument recognition, using one
layer is enough.
A closer comparison of the pooling methods reveals that the

result is relatively less sensitive to segment-level pooling than
to clip-level pooling. Taking sum for clip-level pooling usu-
ally leads to better performance, and the result holds for both
SLBoF and DLBoF. The most obvious case is percussion in-
strument, where clip-level max pooling is significantly worse.
On average, SUM–SUM pooling performs the best for DLBoF,
while MAX-SUM is a competitive alternative.

C. Text-Like Processing for Genre Classification

1) Effect of tf-idf: Table VI shows the result of the 25 vari-
ants of tf-idf measure described in Section IV for DLBoF audio
words, using ODL+L1 and MAX–SUM pooling.15 Power nor-
malization was performed after tf-idf processing.

15We have exhaustively evaluated the performance of all tf-idf functions
when different dictionaries, encoding methods, pooling methods and power
normalization methods are used. Results show that ODL+L1 and MAX–SUM
are the optimal settings for all tf-idf functions.



1196 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 5, AUGUST 2014

Fig. 4. Performance comparison on genre classification for different post-pro-
cessing and low-level features of DLBoF.

Fig. 5. Performance comparison on genre classification for LDA- and PCA-
transformed SLBoF features obtained by ODL+L1, with various feature dimen-
sions (number of topics) and kernel functions for SVM.

The following observations can be made from Table VI. First,
the best two results are obtained by (82.7%) and

(82.0%), both of which outperform the non-tfidf
weighting one (81.4%; cf. Table V). Interestingly, both
and are kinds of entropy measure function, and is
an alternative logarithm form. Second, the standard formulation

is actually competitive as well (82.0%). Third, by ob-
serving the average result, we see that in general the choice of
the idf function effects the performance (from 74.4% to 81.6%)
more than the choice of the tf function (from 76.5% to 79.3%).
Fourth, we note that the performance degrades when we use

instead of , presumably because results in nega-
tive values when , which happens as a result of soft
encoding. Similarly, the performance of and are poor
because they incur negative values when (i.e.,
having terms that appear in more than half of the corpus doc-
uments). Finally, the tf-idf measures adopted by Okapi BM25
do not offer advantages, possibly because we are doing music
categorization instead of text-based search, or because the op-
timal values for the parameters and for text words do not

apply as well to audio codewords.16 Note that there are no sig-
nificant differences among the most competitive tf-idf functions
(such as and ); the optimal choice of tf-idf
function seems to be data-dependent.
In the following study, we adopted as the main

term weighting method (denoted as TW).
2) Post-Processing and Low-Level Features: As both power

normalization and tf-idf weighting are post-processing opera-
tions that are performed after encoding, it is interesting to know
which one is more effective and whether it is beneficial to com-
bine them. Fig. 4 shows that, when using log-power spectrogram
(STFT) as the feature representation, both tf-idf and power nor-
malization significantly ( ) improve the performance
comparing to the no post-processing case (i.e., RAW). More-
over, tf-idf appears to be more effective than power normal-
ization. If we employ tf-idf first and then power normalization
(TW–SQRT), the accuracy of genre classification can be im-
proved slightly.
Fig. 4 also shows that STFT outperforms other features by a

great margin. Although PMSC performs better than mel-spec-
trum, it is still significantly inferior to STFT. Interestingly,
unlike the case of STFT, SQRT–TW performs better than
TW-SQRT for other three features, suggesting that the optimal
ordering of applying these two operations is feature-dependent.
3) Latent Dirichlet Allocation: We compared the perfor-

mance of LDA with principal component analysis (PCA),
which is arguably the most popular dimension reduction
method. Our hypothesis is that, if audio codewords are more
text-like, LDA should perform better than PCA. For this
comparison, we experimented with different numbers of latent
topics (or the dimensions of the reduced space in the case
of PCA) and different kernel functions of SVM, with the
intuition that PCA-transformed features may work better for
nonlinear kernels such as radial basis function (RBF) kernel
and histogram intersection kernel (HIK) [44]. We considered
only single-layer encoding and used ODL+L1.
Fig. 5 shows that, however, PCA (the hard lines) generally

performs better than LDA (the dash lines) in most cases, espe-
cially when the reduced feature space is smaller than 50 in size.
LDA outperforms PCA only when using the linear kernel, but it
appears that the linear kernel is not competitive to the other two
kernels in the reduced feature space.17 It seems that LDA is not
as useful for audio codewords as for text words. Similar obser-
vations were made when means was employed for codebook
learning.
Fig. 5 also shows that LDA performs well when we used the

HIK kernel, which is in particular designed for histogram-like
features. In contrast, PCA works the best with the RBF kernel,
which implicitly assumes the data to be Gaussian-like. When
the feature dimension is 200, both LDA+HIK and PCA+RBF

16The latter point is validated through a grid search over and
, which identifies that the best result is obtained with (higher

threshold rate of terms) and (lower document length normalization).
However, the accuracy is still inferior to that achieved by .
17For the original feature space spanned by the audio codewords, Yeh et al.

[31] showed that linear kernel is only slightly inferior to HIK for BoF-based
genre classification on GTZAN. Moreover, linear kernel is much more efficient
and scalable.
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Fig. 6. Performance comparison on genre classification for different post-pro-
cessing methods under inductive and transductive learning scenarios.

attain 75% accuracy in genre classification, which is close to the
performance (76%) of the original 1024-D (set by ) feature.
The above result shows that both PCA and LDA reduce the

feature dimension greatly without much performance loss, an
important merit for the processing of high-dimensional data.
However, in terms of accuracy, tf-idf weighting plus power nor-
malization is a preferable post-processing step.

D. Inductive Learning and Transductive Learning

The transductive learning scenario can be tested by gener-
ating codebooks from the GTZAN data set itself. Fig. 6 com-
pares the results of the raw features (DLBoF) and those post-
processed by power normalization and/or tf-idf functions in the
two learning scenarios. We see that in the transductive mode,
raw features lead to lower accuracy. However, if power nor-
malization and tf-idf are applied, the accuracy increases con-
siderably. In the case of TW–SQRT, the transductive mode gets
88.1% accuracy, which is much higher than those obtained by
the inductive mode. However, this high accuracy does not guar-
antee generalizability. Moreover, we see that the result is more
sensitive to different post-processing operations for the case of
transductive learning.

E. Application to Semantic Annotation and Retrieval

For CAL500, we followed the common protocol [27] and re-
ported the result of 5-fold CV. The performance of semantic an-
notation was evaluated using per-tag precision, recall, -score,
whereas that of retrieval was measured by the AUCmeasure for
each query tag.18 We used linear SVM and trained binary clas-
sifier for each tag independently.
Table VII shows the average result over the 97 tags. It can be

seen that both SQRT and TW offer improvement for SLBoF, but
not TW–SQRT. In addition, DLBoF significantly outperforms
SLBoF for all the four performance measures, showing again
that the two-layer structure is effective. The best result (0.269
in -score and 0.712 in AUC) was obtained by MAX–SUM,

18AUC, or the area under the receiver operating characteristic curve, places
more emphasis on the performance of the ranked order of songs, rather than the
binary relevance of the retrieved songs.

TABLE VII
PERFORMANCE COMPARISON FOR DIFFERENT SETTINGS ON CAL500

which is also effective for genre classification and instrument
recognition (cf. Table V).

F. Comparison with State-of-the-Art

For genre classification, the best result we obtain with
DLBoF+TW–SQRT reaches 82.7% in accuracy, which is
comparable to existing works that use SC or DBN [6], [10],
[13]. If we consider transductive learning, the best accuracy we
obtained reaches 88.1%, which is very competitive.
For instrument recognition, the state-of-the-art result pre-

sented in [26] is 63% for pitched instruments and 89% for
percussion instruments, using RBF kernel SVM. As Table V
shows, SLBoF performs slightly better than this prior art, and
DLBoF+TW–SQRT with MAX–SUM pooling performs even
better (66.7% and 89.4%). Please note that, without tf-idf and
square root, we can only get 53.6% for pitched instrument. That
is to say, the improvement is due to the two-layer structure and
the text-like post-processing techniques.
For auto-tagging, our result ( -score 0.269/ AUC 0.712) is

comparable to a recent work [63] (0.264/ 0.723), which can be
considered as a hybrid of generative/discriminative method. Al-
though Nam et al. reported better result for the same dataset
(0.292/ 0.754), they adopted transductive learning. In contrast,
we employed inductive learning and used the same dictionary
(learnt from USPOP) for three MIR tasks.

VII. DISCUSSION

A. On the Two-Layer Structure & Alphabet-Word Structure

The analogue of first-layer features to “alphabets” and
second-layer features to “words” needs more justification. In
the present system, audio-alphabets are not utilized directly
as the basic elements of audio-words, but the combination
coefficients of the audio-alphabets. Audio-alphabets are in the
signal space, whereas audio-words are in the indexical space.
It might be more reasonable to form an analogy on the scale of
the signifying objects, instead of on the content itself.
As our evaluation shows, audio-alphabets can be treated di-

rectly as individual terms in tf-idf weighting and LDA, whereas
text alphabets cannot in the case of text IR. Moreover, we note
that the representations may be complementary to one another,
as audio-alphabets are local descriptors for short-time frames,
whereas audio-words represent long-term information. ForMIR
tasks for which the performance of audio-alphabets are good
enough (e.g., percussion instrument recognition), adding audio-
words does not lead to significant improvement. We have also
found that audio-words lead to poor performance when being
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Fig. 7. Log-log rank-frequency distribution of audio-alphabets observed in
three data sets. The audio-alphabets are learnt from USPOP using ODL, and
are assigned to the signals in these data sets using L1 encoding.

used alone, and show advantages only when being fused with
audio-alphabets.
The encoding of audio-words using the second-layer code-

book is a problem about “sparsely-encoding a sparse input
feature using a sparse dictionary.” Although both and
generate sparse codes, the former is a dense codebook, whereas
the latter is a sparse one. From our evaluation, it seems that clas-
sification based on the second-layer codebook is more unstable
and task-dependent.

B. On Text-Like Processing & Zipf’s Law

According to Zipf’s law, a natural statistics of terms would
approximate a straight-line when the term occurrance and term
rank are ploted in log-log scale [64]. To see if the audio code-
words follow the Zipf’s law, we rank the 1,024 audio-alphabets
in a descending order of the relative term occurrence (normal-
ized by document length) in the GTZAN, MTG and CAL500
data sets and plot the distribution in a log-log scale. As Fig. 7
shows, although the distributions of the three data set appear
to be straight line-like, the three differ a lot in the high-ranked
parts. For MTG, we observe frequent terms that appear in a
majority of the documents (songs), implying higher similarity
between the codewords. The distribution of CAL500 is flatter
than the other two, implyingmore uniform distribution of terms.
From our data we also observe that the sparsity of CAL500
codewords is the lowest, followed by GTZAN and then MTG.
Empirically, we found that tf-idf cannot work well for dense fea-
tures, and that power normalization is not effective for data with
shorter-tail distribution. This explains why TW–SQRT does not
improve the result for CAL500.

C. On LDA & Audio Vocabulary

Terms in human language are discrete objects, while audio-al-
phabets and audio-words are “continuous” objects. The defi-
nition of words is relatively “hard,” whereas the definition of
audio codewords is soft (e.g., according to the loss function in
SC and Euclidean distance in VQ). Accordingly, one audio word
may correspond to only a part of an audio objects. The differ-
ence is crucial in that most of the retrieval models of text IR

rely on the word independence assumption [23] and consider
that a word occurs independently from the others. Moreover, as
BoF model are essentially real-valued vectors, for text IR tech-
niques (e.g., LDA) that require integer word counts, we lose
information when converting the values from floating points to
integers (e.g., by rounding). Due to the above reasons, we find
LDA less applicable to audio codewords. In contrast, PCA pre-
servers more information even when the feature dimension is
reduced to less than 50, possibly because such rounding opera-
tions are not needed.
We also note that, unlike text words, we can obtain lots of

different vocabularies for one given music signal using different
encoding methods and parameters. We can even learn multiple
codebooks from low-level features that characterize different
perceptual dimensions of music (e.g., timbre, pitch, and rhythm)
and combine the codebooks to form a better audio vocabulary.
This is part of our future work.

VIII. CONCLUSION

In this paper, we have described a two-layer system that in-
tegrates recent development in SC and BoF-based feature rep-
resentation for music. The resultant audio codewords are mod-
eled as symbols in a text corpora, using a hierarchical structure
that resembles the alphabet-word-document structure of text. A
thorough overview and empirical study on codebook learning,
encoding, pooling, power normalization, tf-idf weighting, and
LDA is given. Our performance study identifies the optimal set-
ting for BoF-based music classification, including using log-
power spectrogram for low-level feature representation, ODL
and sparse coding for codebook learning and codeword assign-
ment, max pooling in the segment-level, sum pooling in the clip-
level, logarithm tf function plus entropy-based idf function, and
square root power normalization. The above setting has been
shown useful for three differentMIR tasks, including genre clas-
sification, predominant instrument recognition, semantic anno-
tation and retrieval. Topic modeling methods such as LDA are
found not that useful for BoF features. This work contributes
to the understanding of the widely-used BoF representation of
music and suggests a novel SC-basedmulti-level model forMIR
problems.
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