
Online Amnestic Dynamic Time Warping to Allow Real-Time

Golden Batch Monitoring

Chin-Chia Michael Yeh, Yan Zhu, Hoang Anh Dau, Amirali Darvishzadeh, Mikhail Noskov†, Eamonn Keogh

University of California, Riverside, †Aspen Technology

{myeh003, yzhu015, hdau001}@ucr.edu, †mike.noskov@aspentech.com,{darvisha, eamonn}@cs.ucr.edu

ABSTRACT

In manufacturing, there is the Golden Batch concept. A golden

batch is an idealized realization of the perfect process to produce

the desired item, typically represented as a multidimensional time

series of temperatures, pressures, flow-rates and so forth. The

golden batch is sometimes produced from first-principle models,

but it is typically created by recording a batch produced by the

most experienced engineers on carefully cleaned and calibrated

machines. In most cases, the golden batch is only used in post-

mortem analysis of an unexpectedly inferior quality product as

plant managers attempt to understand where and when the last

production attempt went wrong. In this work, we make two

contributions to golden batch processing. We introduce an online

algorithm that allows practitioners to understand if the process is

currently deviating from the golden batch in real-time, allowing

engineers to intervene and potentially save the batch. This may be

done, for example, by cooling a boiler that is running

unexpectedly hot. In addition, we show that our ideas can greatly

expand the purview of golden batch monitoring beyond industrial

manufacturing. In particular, we show that golden batch

monitoring can be used for anomaly detection, attention focusing,

and personalized training/skill assessment in a host of novel

domains.

KEYWORDS

Time Series, Dynamic Time Warping, Anomaly Detection

ACM Reference format:

Chin-Chia Michael Yeh, Yan Zhu, Hoang Anh Dau, Amirali

Darvishzadeh, Mikhail Noskov, and Eamonn Keogh. 2019. Online

Amnestic Dynamic Time Warping to Allow Real-Time Golden Batch

Monitoring. In Proceedings of the 25th ACM SIGKDD international

conference on Knowledge discovery and data mining (KDD’19). ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/1234567890

1 Introduction

Batch production is a process used in many industries, in

which goods are produced in groups (batches). Each batch goes

through one stage of the production process before moving on to

the next stage. Some examples of batch production (informally, a

recipe) are the manufacture of food and beverages, pharmaceutics,

chemicals, inks, paints, petrochemicals, and adhesives. Depending

on the items being produced, a single batch cycle may take from

seconds to several days. Most production efforts are heavily

monitored by sensors, for example some chemical productions

have over a thousand time series continuously recorded [30].

To help in a post-mortem analysis of an inferior batch,

engineers use the concept of the Golden Batch. The golden batch

is the ideal batch against which all other batches are compared. It

may be produced from first principle physics, or simply by having

the best engineers scrupulously cleaning the apparatus and

producing a batch under ideal conditions. We argue that confining

the use of golden batch comparisons to offline considerations

represents a lost opportunity. Comparing to the golden batch in

real-time offers the possibility to:

• Intervene: Many batch productions last hours to days. For

processes running at these time scales it may be possible to

save a production run that is drifting towards an unacceptable

product, by physically intervening in some way. One

example of this intervention is seen when manually opening

an axillary valve to cool an overheating ingredient.

• Gracefully Abandon: In the cases in which a batch is

irretrievably lost, it would be useful to know this as soon as

possible. Not only does this save time, it may prevent

damage to equipment and raw material. For example, if a

metal cutting robot chips a blade and is allowed to continue

cutting, it may eventually damage the actuators that move it.

Replacing the blades is a cheap and quick fix, but replacing

the actuators will result in hours of costly downtime.

However, comparing the telemetry of two batch processes is

difficult, since there are two sources of variability:

• Processes typically exhibit some allowable batch-to-batch

variability. These can be caused by random variations in the

ingredients, or in the weather (temperature, air-pressure,

humidity). These variations may also be systematic. For

example, a valve may slowly clog over time, requiring

increasingly a longer time to fill a vat with some ingredients.

• The process may vary in an unacceptable way; for example,

moving a dairy ingredient too fast through a thermiser

process to allow it to become properly pasteurized [28], or a

welding robot continuing to weld after tip-contact has

reduced the ability of the welder to produce clean welds [12].

While one type of variation is inconsequential, and the other is

catastrophic, a classic “lock-step,” one-to-one comparison such as

Euclidean distance is unlikely to be able to tell the difference.

Consider the small synthetic example shown in

Figure 1.

The result is unintuitive. While the bad batch has a clear

semantic difference to the reference golden batch, it is much

closer to it than the good batch is. It is only with very careful

KDD’19, August 2019, Anchorage, Alaska USA C.-C. M. Yeh et al.

inspection that we can see why. The good batch has some

“warping” in time. Most real-world realizations of a batch process

will have such slight variations in time. For example, a

pressurization step may take a little longer on a cold day, but the

next day the humification step may go faster because it happened

to be raining. Figure 2.top shows such example in a delayed

coker, a machine used in refining petrochemicals.

Figure 1: A toy example of a Golden Batch, compared to a

good batch and a bad batch under the Euclidean distance.

One way to become less sensitive to slight distortions in time

is to compare the batches using global statistical features, say the

maximum and minimum values. However, if we do this, we

would have no reason to reject the bad batch shown in Figure 1.

Given the above, we need a comparison mechanism that is

invariant to small local shifts in time, but insists that the right

processes happen, and in the right order. The reader may

appreciate that Dynamic Time Warping (DTW) is potentially such

a distance measure [18]. To see this, and to demonstrate that such

timing differences often occur in real-word data, consider Figure

2.bottom.

Figure 2: top) Two 44.4 hour runs of a delayed coker. While

the runs are very similar, at about hour nine the current

batch begins to drift behind the golden batch, eventually

lagging by 27 minutes by around hour eleven, before moving

back into phase. bottom) DTW is invariant to such local

timing differences.

However, DTW is typically only defined for batch data and

reports only a global difference score [23][24]. In this work, we

will show how we can generalize DTW to work online and report

a localized measure of compliance to an ideal template. Moreover,

we will show that our local DTW-based compliance measure

(hereafter DCM) is amnestic. That is to say, if a sensor reports

that some measure is drifting out of compliance, and through a

corrective action, it is brought back into tolerance, the compliance

measure will reflect that. This contrasts with a classic incremental

DTW score, which are cumulative and monotonically increasing

[1].

Before delving into our proposed algorithms, we will take the

time in the following two sections to discuss the actionability of

golden batch monitoring, and to expand the purview of our ideas

by explaining how they can used in non-industrial settings.

1.1 The Actionability of Golden Batch

Monitoring

Given that we are proposing to move from an offline to an

online analytics model, we need to consider the actionability of

real-time monitoring. We see our method as allowing the

following:

• Attention Focusing Algorithms: For video surveillance, it is

often the case that there are thousands of cameras, but only a

single human to monitor them all. To bridge this gap,

attention focusing algorithms are algorithms designed to

produce an everchanging prioritized “top ten” type list of

views to monitor. We envision doing the same with golden

batch monitoring [5]. As shown in Figure 3, there are many

commercial tools for monitoring time series. While these

tools have various built-in automatic analytics, they also rely

on human inspection of the evolving process. However, there

are many industrial processes that have 1,000+ time series.

We envision using the current value of DCM as an index to

prioritize human inspection.

Figure 3: A commercial tool for monitoring industrial

process data. Here the user has chosen to monitor just two

time series, out of perhaps thousands.

• Anomaly Detection: In some cases, it may be possible to

learn the maximum acceptable levels for the DCM to deviate,

and then sound an alarm if that threshold is reached. We test

this idea in great detail in Section 5.2.

• Personalized Training and Skill Assessment: The idea of

golden batch comparison has been adapted or rediscovered

by several researchers for the task of personalized training in

fields as diverse as music, sports, and surgery [8]. However,

most of this work is only used for after-the-fact analysis. The

ideas introduced in this paper allow us to do this in real-time.

The rest of this paper is organized as follows. In Section 2, we

consider related work. Section 3 introduces all the necessary

definitions and notation. In Section 4, we explain our

methodology, including some variants that may be useful,

depending on the domain of interest. We perform a

comprehensive evaluation in Section 5 before offering

conclusions and directions for future research in Section 6.

Golden Batch

Bad Batch

Good Batch

Missing a heating cycle

agitate dry heat grind pasteurize

Time Series (often called Tags)

Recipe

0

C
e
ls

iu
s

500 TAG: TR15A20
(Temperature)

50

Idle Process starts

0 Hours

Process

ends

Golden

Batch

Current

Batch

Here the Current Batch is running behind the Golden Batch…

...but by here it has almost caught up.

The skewed hatch lines suggest that DTW is

“ tolerating” the lag of the Current Batch

Applied Data Science Track Paper KDD’19, August 2019, Anchorage, Alaska USA

2 Related Work

Our review of related work is brief. To the best of our

knowledge, there is no commercial tool that offers the capability

that we are proposing. This, in spite of the fact that there are at

least twenty major companies offering software products in this

space, including Seeq (see Figure 3, Rockwell, Emerson

Automation Experts, AspenTech, Honeywell, Trendminer, and the

like. Many of these products do have a golden batch product,

however these products are mostly limited to editing/creating the

golden batch. Once created, the user is invited to monitor by

simply visualizing the incoming batch. For example, a training

video for Trendminer suggests the user ask themselves, “as this

batch is going on, how does it visually compare to my (golden

batch)” [27] (our emphasis). AspenTech's Aspen ProMV

multivariate analysis product does have extensive batch

monitoring capabilities, but does not support pattern comparisons

based on a golden batch [1].

The problem of early classification in time series is

superficially similar to the task at hand, see [15] and the

references therein. However, that problem is a supervised

problem, and requires copious training data in at least two classes.

In contrast, we may have only a single positive exemplar

available.

Many principles of golden batch comparison have been

rediscovered by [8] for the task of personalized training for

surgical skills, moreover, they also use DTW for this purpose. The

feedback provided is claimed to be real-time, however this claim

needs to be qualified. It is real-time in the sense that during a

single operation, shortly after the surgeon completes an atomic

action such as suturing or knot-tying, feedback can be provided.

However, they cannot provide feedback during an atomic action.

In contrast, our proposed approach can do exactly that.

3 Definitions and Notation

We begin by defining the data type of interest, time series:

Definition 1: A time series 𝑇 ∈ ℝ𝑛 is a sequence of real-

valued numbers 𝑡𝑖 ∈ ℝ ∶ 𝑇 = [𝑡0, 𝑡1, . . . , 𝑡𝑛−1] where 𝑛 is the

length of 𝑇.

A specific type of time series is defined for the golden batch

monitoring problem which is the problem of interest.

Definition 2: A golden batch 𝐺 ∈ ℝ𝑛 is a time series that

stores the “ideal” outputs from a process sampled by a sensor 1.

Note that we use the term “process” here in the most general

sense. While we are mostly interested in industrial processes, our

ideas may have implications for medical processes [8][26][34],

sports performances, artistic performances [8] and so on.

With the term “golden batch” defined, we are ready to

introduce the research problem addressed in this work.

Definition 3: The golden batch monitoring problem requires a

real-time system that provides quantitative measurement on how a

monitored time series differs with a set of golden batches at each

1There is no standard terminology for this concept, it is also called

Golden Fingerprint [27], Golden Profile, Ideal Batch etc.

point in time. Formally, given a time series that is being

monitored 𝑇 ∈ ℝ𝑛 and 𝑘 golden batches 𝑮 = [𝐺𝑖|0 ≤ 𝑖 < 𝑘, 𝐺𝑖 ∈

ℝ𝑚], a golden batch monitoring system should return a vector

𝐸 ∈ ℝ𝑛 where 𝐸[𝑖] stores the difference/error between 𝑇[0: 𝑖] and

𝑮.

Note that we speak of a set of golden batches. This set is often

of size one. However, sometimes the process may have

polymorphic behaviors that are best modeled by multiple golden

batches. For example, for any large-scale industrial process the

machinery is typically exposed to the elements, thus the plant

engineers may have a hot-day golden batch and a cold-day golden

batch. In one extreme, the plant engineers may add all successful

batches to the golden batch set. We will further address both the

single and the polymorphic cases in Section 5.2.

In our definition, the golden batches are all of length m, but

each such discovered golden batch may have slightly different

lengths. We can fix this by simply interpolating all batches to the

same length. No information is lost by this; each batch is really

encoding information about local ordering and local timing of

events, the DTW itself will give invariance to the global timing

differences, which are typically quite small (on the order of a few

percent).

As noted in Definition 3, we need to monitor the error between

the most recently arrived data points in current batch with the

golden batch under optimal alignment. Such information can be

computed by DTW, and we store the result errors in an

accumulated error matrix. Note, such matrix is frequently referred

to as warping matrix in literature, but we name it the accumulated

error matrix for clarity. Figure 4 shows the optimal alignment

between a golden batch and the time series in current batch.

Figure 4: The optimal alignment between the most up-to-

date time series in current batch with the golden batch.

Definition 4: An accumulated error matrix 𝑴 ∈ ℝ𝑛×𝑚 is a

matrix stores the amount of deviation (or error) accumulated over

time when comparing all prefix of two given time series under

optimal alignment. Formally, given two time series 𝑋 ∈ ℝ𝑛 and

𝑌 ∈ ℝ𝑚, 𝑴[𝑖, 𝑗] = 𝐷𝑇𝑊(𝑋[0: 𝑖], 𝑌[0: 𝑗]).

This accumulated error matrix 𝑴 stores the classic incremental

DTW scores between all pairs of prefix from two given time

series.

Before moving on, we note that while we use the term “error”

here for consistency with the literature [12][29], it may sound

unnecessarily pejorative in this context. Most of the “error” is just

natural and allowable variability.

As noted in [30], “it may be important to control some

parameters tightly, while other measurements may vary

significantly without affecting the produce quality.” We need a

way to represent this variable adherence constraint to golden

batch. The idea of warping constraint window is a classic concept

0 250

Golden Batch

Current Batch

KDD’19, August 2019, Anchorage, Alaska USA C.-C. M. Yeh et al.

in DTW that can be co-opted for this task [6]. As shown in Figure

5.left.top, the fixed warping constraint window of 4 is visualized

with respect to an accumulated error matrix 𝑴. We only need to

compute the highlighted elements (gray) of 𝑴.

Figure 5: DTW can be constrained by only allowing it to

visit the cells marked in gray. In left.top we show a classic

fixed warping constraint window, and in left.bottom we show

a growing warping constraint window, that is designed to

model accumulating “drift” over time. The need for this

growing constraint is reflected in this commercial dataset

(right).

Moreover, consider Figure 5.right which shows a screen dump

of Trendminer’s golden batch tool monitoring three variables. The

“envelopes” show the variability from six successful runs. Note

that the timing uncertainty/variability increases over time. This is

to be expected, as the amount of misalignment between two time

series can accumulate over time as they drift apart. As shown in

0.left.bottom, by using a suitable warping constraint window, we

can represent such a linearly growing temporal drift. Once again,

the warping constraint window is visualized with respect to an

accumulated error matrix 𝑴, and we only need to compute the

highlighted elements (gray) of 𝑴.

To summarize or “flatten” the matrix 𝑴 into a vector or time

series, we define the accumulated error profile:

Definition 5: An accumulated error profile 𝐸 ∈ ℝ𝑛 is a time

series which summarizes an accumulated error matrix 𝑴 by

extracting the classic incremental DTW score between all prefix

of one of the given time series pair with the best aligned prefix of

the other time series within warping constraint window. Formally,

given an accumulated error matrix 𝑴 ∈ ℝ𝑛×𝑚 (of time series 𝑋 ∈

ℝ𝑛 and 𝑌 ∈ ℝ𝑚) and a warping constraint window 𝑤 , 𝐸[𝑖] =

min(𝑴[𝑖, 𝑖 − 𝑤: 𝑖 + 𝑤]) = min
𝑖−𝑤≤𝑗≤𝑖+𝑤

𝐷𝑇𝑊(𝑋[0: 𝑖], 𝑌[0: 𝑗]).

Without loss of generality, for the remainder of this work we

assume a fixed warping constraint window for clarity of

presentation. In the case of dynamic warping window, the

warping constraint window used for the 𝑖th element in 𝐸 should be

computed by a warping constraint window function 𝑤(𝑖). Figure

6 shows an example of accumulated error profile between a

golden batch and the time series in current batch. The error in

accumulated error profile increases dramatically when the current

batch deviates from the golden batch.

Because the values in 𝐸 are classic incremental DTW scores,

the values in the time series are cumulative and thus

monotonically increasing over time. However, we want a score

that is “forgiving” or amnesic. Because batches can take many

hours, if we signal a problem and corrective action is taken, we

want the score to be allowed to return within normal limits. Thus,

we define the localized error profile:

Definition 6: A localized error profile 𝐸𝑙 ∈ ℝ𝑛 is a time series

that stores the local DTW-based Compliance Measure or DCM,

which is non-cumulative and non-monotonically increasing.

Figure 6.bottom shows an example of localized error profile

between a golden batch and the time series in current batch. Note

the error caused by the missing rectified half sine wave only

induces error locally in localized error profile.

Figure 6: top to bottom) A golden batch. A (bad) current

batch which misses a rectified half sine wave. The

accumulated error profile. The localized error profile

returns to a low value after peaking during the anomalous

period.

The golden batch monitoring problem can be considered as a

special case of the anomaly detection problem [17] with the

following properties:

1. The training data is available but only contains example(s) of

the “normal” class.

2. The training data is extremely scarce.

3. The test data arrives in a streaming fashion.

To interpret golden batch monitoring as an anomaly detector,

we can simply set some maximum permissible value for the error

profile. This value could be set from first principles, or as we

show in Section 5.2, learned directly from training data. Our

method can be considered as a spiritual successor to one of the

most competitive anomaly detection method [4][13][17] tailoring

toward anomaly detection problem with aforementioned

properties.

However, it is important to note that golden batch monitoring

is more general than classic anomaly detection as it is typically

understood, as it allows for the possibility to take corrective action

before the situation becomes dire.

4 Methodology

We are finally in a position to formalize our algorithms. We

begin with the single golden batch case, before generalizing to the

polymorphic golden batch case.

4.1 Online DTW Algorithm: Single Batch Case

Given a golden batch 𝐺 and a time series 𝑇 that we are

monitoring, the localized error profile 𝐸𝑙 is computed using the

online DTW algorithm (see Algorithm 1) modified from Ψ-cDTW

[25]. Note the pseudocode is described as a batch algorithm

(opposed to online algorithm) for clarity of presentation; we will

discuss the modifications that allow Algorithm 1 to be computed

in an online fashion while introducing it.

0 500

Golden Batch

Accumulated Error Profile

Localized Error Profile

Current Batch

Applied Data Science Track Paper KDD’19, August 2019, Anchorage, Alaska USA

Algorithm 1: The OnlineDTW algorithm

Procedure OnlineDTW(𝐺, 𝑇, 𝑤)
Input: a golden batch 𝐺, a time series 𝑇, and warping constraint
window 𝑤
Output: localized error profile 𝐸𝑙

1

2

3

4

5

6

7

8

9

10

11

12

13

14

𝑛𝐺
← 𝑙𝑒𝑛𝑔𝑡ℎ(𝐺), 𝑛𝑇 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇)

𝐺 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐺)

𝑴 ← 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥_𝑜𝑓_𝑠𝑖𝑧𝑒(𝑛𝑇, 𝑛𝐺)

𝑴[0: 𝑤, ∶] ← 0, 𝑴[: , 0: 𝑤] ← 0

for 𝑖 ← 0 to 𝑛𝑇

 𝑇[𝑖] ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑇[𝑖])

 for 𝑗 ← 𝑚𝑎𝑥(0, 𝑖 – 𝑤) to 𝑚𝑖𝑛(𝑛𝐺, 𝑖 + 𝑤)

 𝑴[𝑖, 𝑗] ← 𝑎𝑏𝑠(𝑇[𝑖] – 𝐺[𝑗]) +

 𝑚𝑖𝑛(𝑴[𝑖 – 1, 𝑗], 𝑴[𝑖, 𝑗 – 1],𝑴[𝑖 – 1, 𝑗 – 1])

 end for

 𝐸[𝑖] ← 𝑚𝑖𝑛(𝑀[𝑖, 𝑚𝑎𝑥(1, 𝑖 – 𝑤): 𝑚𝑖𝑛(𝑛𝐺, 𝑖 + 𝑤)])

 𝐸𝑙[𝑖] ← 𝐸[𝑖] − 𝐸[𝑖 − 1]

end for

return 𝐸𝑙

In line 1, the lengths of both input time series 𝑇 and 𝐺 is

stored. Since the length of 𝑇 is unavailable in the online scenario,

we can simply initialize it as 𝑛𝐺 + 𝑤. The maximum meaningful

length of 𝑇 is limited by the warping constraint 𝑤 as any point in

𝑇 beyond 𝑛𝐺 + 𝑤 cannot be matched with any point in 𝐺. Next, in

line 2, 𝐺 is normalized using a normalization function designed

specifically for the data domain in question (We will expand on

this in Section 4.4). In line 3, the accumulated error matrix 𝑴 is

initialized as a matrix of infinity values. Note in the pseudocode

the matrix is initialized as a full matrix with space complexity of

𝑂(𝑛𝐺 𝑛𝑇). Because of the warping constraint 𝑤, majority of the

off-diagonal entries are not used. Only 𝑂(𝑚𝑖𝑛(𝑛𝐺 , 𝑛𝑇)𝑤) space is

needed to store the relevant information. In line 4, 𝑴 is prepared

based on [25] to relax the prefix endpoint constraint.

From line 5 to line 13, the loop is advanced by one iteration

each time a new data point in 𝑇 is received. In the case where the

length of 𝑇 is unknown in advance, the for-loop can be replaced

with a while-loop which breaks when receiving the end-of-time-

series signal. In line 6, the received value is normalized using

appropriate normalization function. From line 8 to line 11, we

update 𝑴 using the standard DTW recurrence relation [11][24].

In line 11 and line 12, the accumulated error profile 𝐸 and the

localized error profile 𝐸𝑙 are updated. Under online scenario, we

can yield/emit the newest element of 𝐸𝑙 here. We do not use the

relaxed suffix endpoint constraint [25] as it has the freedom to

choose either the 𝑖th point in 𝐺 and/or the 𝑖th point in 𝑇 to compute

the latest value in 𝐸 . Because the purpose of Algorithm 1 is

monitoring 𝑇, the most recent (𝑖th) point in 𝑇 should be considered

to allow the earliest possible anomaly detection. In other words,

we are using the suffix endpoint constraint proposed in [26]

instead of the one proposed in [25]. See Figure 7 for an

illustration of the adopted suffix endpoint constraint. The

localized error profile is computed simply by taking the difference

between current value in 𝐸 (i.e., 𝐸[𝑖]) with the previous value in

𝐸 (i.e., 𝐸[𝑖 − 1]). One may smooth 𝐸𝑙 with moving average for

better visual representation. Finally, the result localized error

profile 𝐸𝑙 is returned in line 14.

Figure 7: Given the golden batch and the first 𝒊 points of a

time series, the 𝒊th term in the accumulated error profile 𝑬 is

computed by locating the minimal value from the 𝒊th row of

accumulated error matrix 𝑴. The 𝒊 th row of 𝑴 is labeled

green in the figure.

4.2 Online DTW Algorithm: Polymorphic

Golden Batch Case

Given a golden batch set 𝑮 and a time series 𝑇 that we are

monitoring, the localized error profile 𝐸𝑙,𝑜𝑢𝑡 is computed using

Algorithm 2, which calls Algorithm 1 as a subroutine.

Algorithm 2: The OnlineDTW_P algorithm

Procedure OnlineDTW_P(𝑮, 𝑇, 𝑤)
Input: a set of golden batch 𝑮, a time series 𝑇, and warping constraint
window 𝑤
Output: localized error profile 𝐸𝑙,𝑜𝑢𝑡

1

2

3

4

5

6

7

8

9

𝑛𝑇 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇), 𝑘 ← 𝑠𝑖𝑧𝑒(𝑮)

for 𝑖 ← 0 to 𝑛𝑇

 for 𝑗 ← 0 to 𝑘

 𝑬[𝑗, 𝑖], 𝑬𝑙[𝑗, 𝑖] ← 𝑂𝑛𝑙𝑖𝑛𝑒𝐷𝑇𝑊(𝑮[𝒋], 𝑇[𝑖], 𝑤)

 end for

 𝑖𝑑𝑥 ← 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑬[: , 𝑖])

 𝐸𝑙,𝑜𝑢𝑡[0: 𝑖] ← 𝑬𝑙[𝑖𝑑𝑥, 0: 𝑖]

end for

return 𝐸𝑙,𝑜𝑢𝑡

In line 1, the length of input time series 𝑇 and the number of

golden batch time series in 𝑮 are stored in 𝑛𝑇 and 𝑘 respectively.

The variable 𝑛𝑇 is only used for cleaner presentation and is not

required in real implementation. From line 2 to line 8, we process

each newly received data point of 𝑇 in each iteration. From line 3

to line 5, we update both 𝑬 and 𝑬𝑙 using the latest point of 𝑇. Note

the call to the 𝑂𝑛𝑙𝑖𝑛𝑒𝐷𝑇𝑊 only advances the outer loop (i.e., line

5 to line 13 in Algorithm 1) by one. In line 6, we identify the best

(i.e., most similar in terms of DTW score) golden batch, and in

line 7, we point the current localized error profile 𝐸𝑙,𝑜𝑢𝑡 to the 𝑬𝑙

computed using the best golden batch. Lastly, we return the

localized error profile 𝐸𝑙,𝑜𝑢𝑡 in line 9. The overall time complexity

of Algorithm 2. is 𝑂(min(𝑛𝐺 , 𝑛𝑇) 𝑤𝑘).

4.3 Generalization of Online DTW Algorithm

The algorithm we outlined in Algorithm 1 computes the

accumulated error 𝐸 for a univariate time series. As with the

original DTW algorithm [11][24], our algorithm can be trivially

modified for other types of sequential data such as multivariate

time series or symbolic sequences by 1) changing the

golden batch

tim
e

 series

KDD’19, August 2019, Anchorage, Alaska USA C.-C. M. Yeh et al.

normalization function at line 2 and 6 (e.g., see Section 4.4,) and 2)

changing the distance function at line 8 (i.e., replace abs(𝑇[𝑖] –

𝐺 [𝑗]) with appropriate distance function (e.g., norm of the

elementwise difference between vector 𝑇 [𝑖] and 𝐺 [𝑗] or sub-

dimensional distance [31]).

In addition to the trivial modification outlined above, one

nontrivial modification which turns the point-versus-point

warping distance computation into subsequence-versus-

subsequence warping distance computation is introduced here.

The subsequence-versus-subsequence version is useful when the

user is interested in aligning local shapes between golden batch 𝐺

and time series 𝑇 instead of the values of each individual points

(i.e., shape-based alignment is amplitude/offset invariant). The

naïve implementation of the subsequence-by-subsequence idea is

simple. Given a subsequence length 𝑚, we first apply a sliding

window of size 𝑚 with hop 1 to extract all subsequence of 𝐺 and

𝑇 then store the extracted subsequences in respective list 𝐺𝑚 and

𝑇𝑚 (where 𝐺𝑚[0] contains the first 𝑚 sized subsequence of 𝐺).

Then, we input 𝐺𝑚 and 𝑇𝑚 to a modified version of Algorithm 1

where 1) line 2 and 6 are removed, and 2) the distance function at

line 8 is changed to the function that computes z-normalized

Euclidean distance.

It is easy to understand the correctness of the naïve

implementation, but the time complexity (i.e.,

𝑂(𝑚𝑖𝑛(𝑛𝐺 , 𝑛𝑇)𝑤𝑚)) would be suboptimal because we ignore the

fact that there are 𝑚 − 1 points overlapped between consecutive

subsequences. We can reduce the time complexity to

𝑂(𝑚𝑖𝑛(𝑛𝐺 , 𝑛𝑇)𝑤) by using the same computational scheme

which accelerates STOMP [32][33]. Due to space limitations, we

will not describe the computational scheme in this paper. Those

interested can refer to [32][33] for details about the computational

scheme, and the optimized source code for online DTW using this

scheme can be download from [21].

Another generalization that can be made to Algorithm 1 is

replacing the fixed-width warping constraint window with a

dynamic warping constraint window (see Figure 5 and its

accompany paragraphs). The modification is identical to the

standard DTW algorithm [23].

Because the evaluation of the last two aforementioned

modifications is beyond the scope of this paper, we leave such

considerations for future work.

4.4 Normalization

Normalization is crucial in the case of multidimensional time

series when each dimension is measured by different types of

instruments (e.g., thermometer, pressure gauge, or flow-rates

gauge) [32][33]. Because the measurements from different

instruments carry different units (e.g., kelvin, pascal, or cubic

meters per second), numbers from different dimensions are not

commeasure. If we sum the error from different dimensions

without normalization, the result localized error profile would be

dominated by the dimension with largest range. For example, in

the Wafer database [16], the range of the six dimensions are {9,

234, 10, 4, 1, 61}; the first, third, fourth, and fifth

dimension have little to no effect to the localized error profile

compared to the second dimension. Such problem is usually

addressed by applying z-normalization [18] or 0-1 normalization

to each dimension of the multidimensional time series.

5 Experimental Evaluation

To ensure that our experiments are reproducible, we have built

a website which contains all data/code/raw spreadsheets for the

results [21]. In addition, some experiments are augmented by

videos, showing the results being computed in real time.

We had access to datasets from a major oil and gas industrial

analytics company to bootstrap and motivate this research effort.

However, this industrial sector is notoriously secretive and

unwilling to share data. This conflicts with our academic policy of

complete transparency and reproducibly. Thus, we only evaluate

on proxy datasets, and existing public datasets that we can archive

and share in perpetuity [21].

5.1 A Case Study in Oil and Gas Processing

We begin with a simple demonstration of our ideas, before

considering a more qualitative evaluation in subsequent sections.

As the reader will appreciate, the oil and gas industry is

reluctant to share real data, particularly of faults. In this section,

we revisit the real dataset introduced in Figure 2 and induce a

synthetic fault. While the fault is synthetic, it is based on a real

problem communicated to us by a petrochemical engineer. In

Figure 8 we show the DCM computed for the example introduced

in Figure 2.

Figure 8: The DCM computed between the golden batch

(blue/bold) and the current batch (green/fine) shown in

Figure 2.

We used warping constraint window of 30 minutes, which was

suggested by the petrochemical engineer. Note that the DCM

never rises above 1.5, in spite of the fact that the beginning of the

heat-up phase is a little slower in the current batch.

Figure 9: The DCM computed using the same golden batch

(blue/bold) shown in Figure 8 and the current batch

(green/fine) under the effect of recreated freak rainstorm.

Delayed cokers are typically so large that they are not housed

in a building, but left outside exposed to the elements. A

petrochemical engineer recalled a fault he had seen a handful of

times in his career. In most of the Middle East’s oil processing

regions, the summer days are uniformly hot with temperature

between 45° C and 50° C and near zero chances of precipitation,

0

100

0 50

0

500

0 50Hours

Hours

Idle Process starts

 C
D

C
M

0

100

0 50

0 50Hours

Hours

 C
D

C
M

Induced fault
Idle Process starts

0

500

Applied Data Science Track Paper KDD’19, August 2019, Anchorage, Alaska USA

ideal for oil processing. However, every few years, some regions

can see a freak rainstorm lasting for just a few minutes. These

brief rainstorms can quickly cool the unprotected boiler, as we

have recreated in Figure 9.

The sudden cooling can cause foaming and heater fouling,

which may require “pigging” (mechanical coke removal), which

is extremely expensive. While it is not possible to heat up the

boiler fast enough to mitigate the rain’s cooling effect, it may be

possible to reduce the infeed rate to reduce the damage. Here, the

short lag between the cooling event and the dramatic rise of the

DCM would allow such corrective interventions. As shown in

Figure 9.bottom, the DCM score significantly increases at the

relevant location. Moreover, as the temperature is brought back

into compliance, the DCM score decreases to normal levels.

5.2 Large Scale Experiments

To allow large-scale experiments with stochastic element, we

repurpose the eight-class Mallat data set [14]. As shown in Figure

10, this data set is at least, by visual inspection, a good proxy for a

four-stage process in petrochemical processing [22][27][30].

Figure 10: Samples of data from the Mallat dataset, showing

multiple instances in each class to hint that the natural

variability. While a synthetic dataset, they are highly

reminiscent of real industrial traces.

We selected the 𝑘th class from the Mallat data set and denoted

all the time series from it as “normal” and the other time series as

“abnormal” (𝑘 ∈ ℤ: 1 ≤ 𝑘 ≤ 8]). We created the training data set

by randomly including eight time series from the normal class,

and we added all the excluded time series (both normal and

abnormal) to the test data set.

We repeated this procedure 32 times for each class. In other

words, we use the Mallat data set 256 times to generate training

and test data splits for each trial of experiment.

Given that we have eight exemplars to act as the golden batch,

but plan to only use one (for evaluating the single batch system),

we need a policy to obtain our single true golden batch. We

consider the follows two options:

• We construct the golden batch set by randomly selecting a

time series from the training data set (i.e., the naïve method).

• We construct the golden batch set by averaging time series

from the training data set. It has been demonstrated that

DTW averaging can be very useful for producing idealized

exemplar for classification and clustering [18][19], and as

such, it is natural to ask if it has utility here.

For each time series in the test data set, we compute the

localized error profile 𝐸𝑙 using Algorithm 1, and then we use the

Maximum DCM (𝑀𝐶𝑀) (i.e., the maximum value in 𝐸𝑙) as the

anomaly score.

As the objective is to detect anomalies, we need a threshold for

the anomaly score. We set the threshold as 𝑀𝐶𝑀T =

 𝑚𝑒𝑎𝑛(𝑀𝐶𝑀) + 3 𝑠𝑡𝑑(𝑀𝐶𝑀) where the 𝑚𝑒𝑎𝑛(𝑀𝐶𝑀) and the

𝑠𝑡𝑑(𝑀𝐶𝑀) are estimated from the MCM s computed using the

training data set. This idea is adapted from the classic Three-

sigma Limit in statistical process control [22]. Note, in the case

where multiple time series are presented in the golden batch set

we estimated the threshold for each golden batch time series

separately. The learned threshold 𝑀𝐶𝑀T can also be used to

normalize 𝐸𝑙 (i.e., �̅�𝑙 = 𝐸𝑙/𝑀𝐶𝑀T), so the �̅�𝑙 can be loosely

interpreted as the probability of a time series being abnormal.

We summarize the experimental results in Table 1 using two

different performance measurements: F-score and AUC-ROC

[20]. The presented values are computed by averaging the

experiment results over 256 trials of experiment. The DTW

averaging technique [18][19] improves the system significantly

over the naïve method (tested with paired sample t-test with 5%

significance) under both performance measurements. In contrast,

the F-score of the naïve method is even worse than the random

guess baseline.

Table 1: Naïve Method Versus DTW Averaging

 F-score AUC-ROC

Random Guess 0.935 0.500

Naïve 0.878 0.968

DTW Averaging 0.964 0.990

As neither the F-score nor the AUC-ROC provides the whole

picture for the capability of our method, we also report the

confusion matrix. The confusion matrix is shown in Table 2.

Because we are averaging over the 256 runs, the values are real

numbers; however we round to integers for clarity.

Table 2: Averaged Confusion Matrix

n = 2,392 Predicted Good Predicted Bad Total

Actual Good TN = 259 FP = 33 292

Actual Bad FN = 106 TP = 1,994 2,100

Total 365 2,027

Because the Three-sigma Limit rule is just a heuristic “rule-of-

thumb”, the optimal threshold may be a value other than three

standard deviation above the mean [22]. In a post-hoc analysis, we

varied the threshold from mean minus three standard deviation to

mean plus six standard deviation. Figure 11 shows the averaged

F-score as we vary the threshold from conservative (i.e.,

𝑚𝑒𝑎𝑛(𝑀𝐶𝑀) − 3 𝑠𝑡𝑑(𝑀𝐶𝑀) /lower FP rate/higher FN rate) to

liberal (i.e., 𝑚𝑒𝑎𝑛(𝑀𝐶𝑀) + 6 𝑠𝑡𝑑(𝑀𝐶𝑀) /higher FP rate/lower

FN rate). Note positive is associated with the anomaly class while

negative is associated with normal class. Although this shows that

the threshold defined using the Three-sigma Limit rule is not

optimal, the performance gained by using the optimal threshold is

very small (i.e., from 0.965 to 0.971), and any values between -1

and 5 will produce a result better than random guessing (i.e. the

default rate).

class 1 class 5

class 2 class 6

class 3 class 7

class 4 class 8

KDD’19, August 2019, Anchorage, Alaska USA C.-C. M. Yeh et al.

Figure 11: The optimal threshold is 𝒎𝒆𝒂𝒏(𝑴𝑪𝑴) +
𝟏. 𝟓 𝒔𝒕𝒅(𝑴𝑪𝑴) based on this post-hoc analysis.

It is common to have a polymorphic “normal” class in

industrial processes. For example, the input material (infeed) for a

chemical processing factory may have a different composition for

different seasons (i.e., Summer and Winter [29]) or different

origins of raw material, and this difference in the infeed causes the

process to generate distinct time series [29]. In this case, we

require multiple time series to represent an acceptable run in the

golden batch set.

To test out our method under polymorphic settings, we

repurpose the Mallat data set in a similar fashion as our previous

experiment, but instead of just selecting samples from a single

class as the normal samples, we select samples from multiple

classes to form the training set. At each trial, we first generate a

random integer 𝑛𝑐 ∈ ℤ: 1 ≤ 𝑛𝑐 ≤ 4 which gives us the number of

Mallat classes we draw our samples from. Next, we randomly

choose 𝑛𝑐 classes from the Mallat class label set {𝑘 ∈ ℤ: 1 ≤ 𝑘 ≤

8} and add the samples associated with the selected class into the

normal class set. Finally, we randomly select 16 samples from

normal class set as the training set and leave the rest as the test set.

As with the previous experiment, we repeat this process 256 times.

As shown in the previous experiment, DTW averaging is

significantly better than the naïve method. To apply the same idea

to this problem, we adopt the 𝑘-means with DTW averaging to

produce the golden batch set from the training data. The 𝑘 in 𝑘-

means is set to four as it is the minimum number of samples in

golden batch to represent the normal class when 𝑛𝑐 is four (i.e., 𝑘

is fixed to four even if 𝑛𝑐 is less than 4). For each time series in

the test data set, we compute the localized error profile 𝐸𝑙,𝑜𝑢𝑡

using Algorithm 2, then we use the Maximum DCM (𝑀𝐶𝑀) (i.e.,

the maximum value in 𝐸𝑙,𝑜𝑢𝑡) as the anomaly score.

Table 3: Naïve Method Versus DTW Averaging

 F-score AUC-ROC

Random Guess 0.575 0.500

Naïve (1 batch) 0.343 0.758

DTW Averaging

(1 batch)
0.564 0.806

Naïve

(4 batches)
0.760 0.858

DTW Averaging

(4 batches)
0.875 0.896

As in the previous experiment, we use the Three-sigma Limit

heuristic to determine the threshold; we use F-score and AUC-

ROC [20] to measure the performance. Table 3 shows the

performance of both naïve method and DTW averaging with 1/4

batches.

The DTW averaging technique with multiple batches improves

the system significantly over the others (tested with paired sample

t-test with 5% significance) under both performance

measurement. Both naïve and DTW averaging with one batch’s

resulting F-scores are worse than random guessing which further

reinforces the need for multiple batches in polymorphic scenario.

Again, as neither the F-score or the AUC-ROC provides the

complete picture for the capability of our method, we also report

the confusion matrix. Averaged over 256 runs, the result

confusion matrix is reported in Table 4. Note that as in Table 2,

we again rounded to integers for clarity.

Table 4: Averaged Confusion Matrix

n = 2,384 Predicted Good Predicted Bad Total

Actual Good TN = 507 FP = 212 719

Actual Bad FN = 139 TP = 1,526 1,665

Total 646 1,738

We performed the same post-hoc analysis as before to

reexamine the threshold established by Three-sigma Limit rule.

Figure 12 shows the averaged F-score as we vary the threshold.

Although the threshold defined using the Three-sigma Limit rule

is not optimal, the performance gained by using the optimal

threshold is slim (i.e., from 0.875 to 0.877).

Figure 12: The optimal threshold is 𝒎𝒆𝒂𝒏(𝑴𝑪𝑴) +
𝟐. 𝟓 𝒔𝒕𝒅(𝑴𝑪𝑴) based on this post-hoc analysis.

In addition to the polymorphic cases, it is also important to test

the method on multidimensional or multivariant time series as

multidimensional time series is ubiquitous in domains such as

industrial and human activity monitoring. For this purpose, we

have tested our method on the Wafer database [16] which is a real

dataset consisting of readings from six different sensors (e.g.,

pressure, emission, and power) during a wafer manufacturing

process. The yield of the process is either good (or normal) or bad

(or abnormal).

The Wafer database consists of 1,067 normal runs and 127

abnormal runs. To format the data for our experiments, we have

randomly selected 𝑛𝑡 examples from the normal runs as the

training data and left the rest as the test data. We repeat the

experiment 32 times for each of the four different 𝑛𝑡 settings (i.e.,

8, 16, 32, and 64). Since there is only one type of normal pattern,

we only use one batch in this set of experiment. Figure 13 shows

the AUC-ROC as we vary the number of training data. DTW

averaging constantly outperforms the naïve method and the

performance does not change substantially as we vary the number

of training data.

-3 0 3 6
Sigma

0.5

1

F
-s

co
re Random guess

DTW averaging

-3 0 3 6
Sigma

0.5

1

F
-s

co
re

Random guess

DTW averaging

Applied Data Science Track Paper KDD’19, August 2019, Anchorage, Alaska USA

Figure 13: The DTW averaging technique improves the

performance in all cases disregard the number of training

data.

As with the previous experiments, we also wish to evaluate the

three-sigma limit rule with a post-hoc analysis under different

numbers of training data. Figure 14 shows the F-score as we vary

both the sigma and the number of training data. The three-sigma

limit rule produces near optimal results when the number of

training data is small. However, when we increase the number of

training data, the chance of hitting the optimal (or near optimal)

threshold decreases. The plateau around the optimal threshold

decreases as the number of training data increases. This

observation hints the possibility of setting the threshold as a

function of training data set size. This is somewhat similar to the

observation that the DTW’s warping window width should be

decreased as increase the training set size [6]. Nevertheless, we

leave such investigation for future work as it is beyond the scope

of the current paper.

Figure 14: The F-score as we vary both the sigma and the

number of training data.

5.3 Expanding the Purview of Golden Batch

Monitoring

In our introduction, we noted that one use of a golden batch

monitoring system is attention focusing. This idea is most

commonly associated with video monitoring [5], but applies in

any circumstances where multiple evolving data sources compete

for human attention. In this section, we show that our algorithms

allow us to expand the notion to of attention focusing to a novel

domain.

The Taipei Mass Rapid Transit (MRT) system consists of 108

stations and carries an average 2.10 million passengers per day.

As shown in Figure 15, the number of passengers using each

station is monitored by faregates and other sensors at a fine

temporal resolution2 . Note that the three time series shown in

Figure 15 look quite different, as their use is dictated by their

relative proximity to centers of education, entertainment,

shopping, residence, and the like. The metro-master is stationed at

2 The data can be download from http://data.taipei/, however we

have cached the exact version we used at the supporting website

[21].

the headquarters in Taipei Main Station. One of her tasks is to

monitor the demand at the stations and respond by redirecting

trains. For example, if she notes an unexpectedly high demand,

she reduces the train interval. Because of the lag time needed to

prepare trains for service, timeliness is of the essence, and she

must monitor 108 time series at once.

Figure 15: The passenger counts over the first week of

November 2015 for three different stations.

We envision casting this task as a Golden Batch Attention

Focusing problem. Concretely, we take the time series recorded in

each station in the previous week and denote it as the golden batch

for that station. We then proceed to monitor each station’s current

week time series with the golden batch and rank them based on

the result DCM ranking from high DCM (more “different” to

previous week) to low DCM (as expected based on previous

week).

Figure 16 shows the time series from the top ten stations from

December 27, 2015 to December 31, 2015 around midnight.

Figure 16: The New Year’s Eve firework around midnight

creates a surge in ridership, especially the stations near the

popular firework watching spot (i.e., the first five stations)

and major transportation hub (i.e., Taipei Main Station).

For each station, the top time series is the golden batch, and

the bottom time series is the time series being monitored. The red

lines linking both time series show the alignment between the two

weeks, with the boldness of the red line in proportion to the DCM

value (perfect alignments are effectively invisible).

The ridership surges in many stations due to the Taipei

101/Miramar Entertainment Park New Year’s Eve fireworks event

particularly for the stations near popular firework watching spots

(i.e., the first five stations) and major transportation hub (i.e.,

Taipei Main Station). For contrast, note that the last two stations

8 16 32 64

Number of Training Data

0.5

1.0
A

U
C

-R
O

C

naïve method

DTW averaging

Sigma

0

0.6

-3 0 3 6

F
-s

co
re

𝑛𝑡 = 8

𝑛𝑡 = 16

𝑛𝑡 = 3

𝑛𝑡 = 64

Wanfang Community

Taipei City Hall

Fu Jen University

1. Xiangshan

3. Taipei 101

5. Xinyi Anhe

7. Shilin

2. Sun Y.-S. Memorial Hall

4. Jiannan Road

6. Taipei Main Station

8. Xiaobitan

Su Mo Tu We Th Fr Sa

Day
Su Mo Tu We Th Fr Sa

Day

107. Zhongxiao Xinsheng 108. Guting

KDD’19, August 2019, Anchorage, Alaska USA C.-C. M. Yeh et al.

(i.e., Zhongxiao Xinsheng and Guting) consist of almost invisibly

faint lines, suggesting that they are unaffected by the festivities.

To further consider the utility of our ideas in this domain, we

simulated an unexpected event, and measured how much time it

would take to force the effected stations to rise to the top of the

list of 108. We imagine that the area around Presidential Office

Building unexpectedly closes due to a spontaneous demonstration

event that happens on the last Sunday of March 2016 from 2 pm

to 8 pm (assuming people start to gather around 1 pm). This

forces many people leaving the NTU Hospital (which is very

close to the Presidential Office Building) to use the Shandao

Temple Station instead of the NTU Hospital Station during the

demonstration. In particular, we simulate an 80% reduction in the

volume of traffic at NTU Hospital Station and corresponding

increase in the volume of traffic at Shandao Temple Station. Note

the percentage change is substantially less in Shandao Temple

Station as it is a busier station compared to the NTU Hospital

Station.

Here we use the previous Sunday as the golden batch. As

Figure 17 shows, this simulated event does result in the two

effected stations quickly become the top two at 1:51 pm, which

gives the control center 9 minutes to react before the

demonstration begin. For contrast, note the last two stations (i.e.,

Nanjing Fuxing and Taipei Main Station) consist of almost

invisibly faint red lines suggesting that they are unaffected by this

disturbance.

Figure 17: Oppose to Figure 16, we only monitor in a daily

fashion instead of weekly fashion to better show the minutely

update (upsampled from hourly update).

5.4 Human Performance Coaching

The idea of personalized training and skill assessment by

comparing time series telemetry of an idealized performance to

subsequent attempts has been attempted in a host of domains,

including music [9], surgical skills [8][34] and sports. However,

in virtually all these efforts, the coaching is done offline. In a

handful of domains, it may be possible to give the user feedback

in real time. For example, when practicing calligraphy, the

feedback can come in the form of visual cues (if using pen-based

computing), or tactical feedback (if using a haptic pen [3][7]).

With this in mind, we consider an application of our system to

calligraphy coaching and instrument playing skill assessment.

Calligraphy

One common practice for learning the art of writing

Hanzi/Kanji (i.e., Chinese characters) as a beginner is to carefully

imitate a given example over a 3x3 grid. Figure 18 shows an

example of such practice for the character “tea”. A beginner can

first observe/trace the example shown in the left grid, then

practice recreating the character in an empty grid like the one

shown in the right. Note, for Hanzi/Kanji writing, the order of

writing each stroke and the way to initialize/end each stroke3 is

standardized.

Figure 18: An example for the Hanzi/Kanji “tea” on a 3x3

grid. A beginner is encouraged to learn to write the

character by either tracing the given example in the left grid

or redraw the character in the right grid. The numbers

shown in left grid are the order of writing each stroke.

We have formulated the Hanzi/Kanji writing practice process

as the golden batch problem in which the example provided by an

experienced writer is the golden batch and a naïve writer is asked

to imitate the golden batch while our golden batch method

provides real-time feedback. That is, the DCM between the naïve

writer’s current pen location and the golden batch can be used to

drive a haptic feedback system to correct the naïve writer’s

writing in real-time [7]. In our experiment, we have asked an

experienced writer to provide 15 examples of the character “tea,”

then we have asked a naïve writer to try his best recreating the

writing of the experienced writer.

Both writers utilized Livescribe Echo Smartpens to transcribe

the character “tea” on a dotted pattern paper. When a user writes,

an infrared camera at the tip of the smartpen detects a subtle (near

invisible to the human eye) dot-matrix pattern on the paper. The

dot-matrix pattern provides information about where on the page

the writing is occurring. This information is stored as a series of

data points containing Cartesian XY coordinates and timestamp.

The tip of the smartpen is equipped with a switch that is sensitive

to pressure. The switch records the timestamps at which the

smartpen is writing or has been lifted up from the paper. This data

is utilized to split collected data points into separate pen strokes.

Finally, these pen strokes are transformed into 2D time series.

We learn the golden batch from the five best attempts of the

experienced writer (as she self-judged) with DTW averaging.

Figure 19.left shows the learned golden batch. By computing the

DCM between a naïve writer’s writing with the golden batch, we

can acquire the amount of correction required for the naïve writer

to improve himself at each individual time instance. Figure

19.right shows the naïve writer’s writing over the golden batch.

The thin lines shown in the figure indicate the alignment between

the golden batch and the naïve writer’s writing where the darkness

of the line is proportional with the amount of the correction (i.e.,

DCM).

3 For example, a stroke is typically written in a top-down fashion

for vertical stroke.

1. NTU Hospital

3. Dahu Park

107. Nanjing Fuxing

2. Shandao Temple

4. Taipei Arena

108. Taipei Main Station

5 9 13 17 21 1

Hour
5 9 13 17 21 1

Hour

1

2

3

4

5 6

7

8

9 10

Applied Data Science Track Paper KDD’19, August 2019, Anchorage, Alaska USA

Figure 19: left) The golden batch learned from the

experience writer’s examples. right) A beginner’s writing

(green) over the golden batch. The thin lines indicate the

alignment between the beginner’s writing and the golden

batch where the strength of the line indicates the strength of

correction needed.

In Figure 20, we have replaced the complete writing with a

half-completed example to showcase our method’s real-time

output in the middle of writing. Compared to the one shown in

Figure 19.right, the character is written by a more experienced

writer. Because the last stroke in Figure 20.right deviates from the

golden batch, the DCMs of this stroke are stronger comparing to

the prior written part of this character. Given only that our system

is able to provide either a visual or haptic feedback, the writer can

correct his/her writing in real-time.

Figure 20: left) The golden batch learn from the experience

writer’s examples. right) A half-done writing (green) over

the golden batch. The thin lines indicate the alignment

between the beginner’s writing and the golden batch where

the strength of the line indicates the strength of correction.

Music

Real-time performance feedback is important for learning

musical instruments [9]. For example, if a musician plays the

wrong note in the first chorus during practice, it is very likely that

she will make the same mistake in the second chorus of the same

playthrough because she may misread the music script in the same

fashion. However, if the golden batch system notifies the

musician in the first chorus about the misplayed note, it is possible

the same mistake can be avoided in the second chorus.

We use the piano arrangement of Stairway to Heaven by Led

Zeppelin. The musical script was downloaded in MIDI format

from [10]. We use the downloaded MIDI as the golden batch, then

generate the batch being monitored with the following errors,

which were suggested by a music teacher as being common

mistakes by amateurs:

1. We vary the start time and end time of each piano keystroke

with a lead/lag of 𝑡~𝑁(0, 0.0 5) seconds.

2. Each piano keystroke is given a 0.5% chance of being wrong.

A wrong key is generated by randomly ascending/descending

the pitch 𝑘~𝑁(0, 5). Figure 21 shows a snippet of the modified

midi visualized as piano roll. The wrongly played key (circled in

red) can be higher or lower in pitch comparing to the golden

batch.

Figure 21: A ten second snippet piano roll of the modified

MIDI starting from the 5th seconds of the song. The musician

made two mistakes, which are circled in red. The correct key

is shown in blue and the incorrect key in orange.

The outputted DCM of our golden batch algorithm of the same

ten seconds snippet is shown in Figure 22.bottom. The DCM

raised prominently when the wrong note is played. Although our

method only shows the temporal location of the wrongly played

note, it is trivial to identify the specific key which the musician

wrongly played using an XOR operation given the temporal

alignment (which is part of the gold batch’s output). A demo

video, which shows the DCM being computed just-in-time as the

musician plays the instrument, can be found in [21].

Figure 22: top) The golden batch for the same section of the

song. middle) The same snippet shown in 0. bottom) The

DCM computed by our method. The red lines indicate the

alignment between the current batch and the golden batch.

6 Conclusion

In this work, we have introduced an online amnestic dynamic

time warping for solving the golden batch problem. The proposed

algorithm is online because it evaluates the correctness of each

data point as it arrives, and it is amnestic as any deviation in the

monitored data will only induce error locally, and if the deviation

is corrected the error will decrease appropriately. We have

showcased the utility of our algorithm by using it as an attention

focusing algorithm, anomaly detection algorithm, and a

personalized training and skill assessment on a set of diverse data

sets from domains including: industry, transportation systems, and

human handwriting.

In this work, we have introduced an online amnestic dynamic

time warping for solving the golden batch problem. The proposed

algorithm is online because it evaluates the correctness of each

data point as it arrives, and it is amnestic as any deviation in the

monitored data will only induce error locally, and if the deviation

is corrected the error will decrease appropriately. We have

showcased the utility of our algorithm by using it as an attention

focusing algorithm, anomaly detection algorithm, and a

personalized training and skill assessment on a set of diverse data

29

88 Current Batch

k
e
y

 n
u
m

b
e
r

5 15seconds

29

88

29

88

Golden Batch

Current Batch

5 15seconds

k
e
y

 n
u
m

b
e
r

DCM

KDD’19, August 2019, Anchorage, Alaska USA C.-C. M. Yeh et al.

sets from domains including: industry, transportation systems, and

human handwriting.

ACKNOWLEDGMENTS

We would like to thank all the donors of data. Thanks to Dr.

Thomas Stahovich for his help with the pen-based computing

apparatus, and the petrochemical engineer (who asked to remain

anonymous) for his help and advice. This work was funded by

NSF awards 1510741 and 1544969, by NIH R01-HD083431-

01A1 and by a gift from MERL labs.

REFERENCES
[1] Aspen ProMV Brochure, https://www.aspentech.com/en/resources/brochure/aspen-

promv-brochure.
[2] I. Assent, M. Wichterich, R. Krieger, H. Kremer, T. Seidl, “Anticipatory DTW

for Efficient Similarity Search in Time Series Databases.” PVLDB 2(1): 826-

837 (2009).

[3] O. Bau, I. Poupyrev, A. Israr, and C. Harrison. “TeslaTouch: electrovibration

for touch surfaces.” In Proceedings of the 23nd annual ACM symposium on

User interface software and technology, pp. 283-292. ACM, 2010.

[4] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly detection: A survey.”

ACM computing surveys (CSUR) 41, no. 3 (2009): 15.

[5] S. Chiappino, L. Marcenaro, and C. S. Regazzoni, “Selective attention

automatic focus for cognitive crowd monitoring,” Advanced Video and Signal

Based Surveillance (AVSS), 2013 10th IEEE International Conference on.

IEEE, 2013.

[6] H. A. Dau et al. “Optimizing dynamic time warping’s window width for time

series data mining applications.” DMKD (2018): 1-47.

[7] M. Ewerton et al. “Assisting Movement Training and Execution with Visual

and Haptic Feedback.” Frontiers in Neurorobotics 12 (2018): 24.

[8] M. J. Fard, S. Ameri, and R. D. Ellis. “Toward Personalized Training and Skill

Assessment in Robotic Minimally Invasive Surgery.” In Proceedings of the

World Congress on Engineering and Computer Science, vol. 2. 2016.

[9] S. Giraldo et al. “Automatic assessment of violin performance using dynamic

time warping classification.” In 2018 26th Signal Processing and

Communications Applications Conference (SIU). IEEE, 2018.

[10] https://musescore.com/user/7639766/scores/2847181.

[11] F. Itakura, “Minimum prediction residual principle applied to speech

recognition.” IEEE Transactions on Acoustics, Speech, and Signal Processing

23.1 (1975): 67-72.

[12] P. Kah, M. Shrestha, E. Hiltunen, and J. Martikainen. “Robotic arc welding

sensors and programming in industrial applications.” International Journal of

Mechanical and Materials Engineering 10, no. 1 (2015): 13.

[13] E. Keogh, J. Lin, and A. Fu. “HOT SAX: Finding the most unusual time series

subsequence: Algorithms and applications.” In Proc. ICDM, pp. 440-449. 2004.

[14] S. Mallat. A wavelet tour of signal processing. Elsevier, 1999.

[15] U. Mori, A. Mendiburu, S. Dasgupta, and J. A. Lozano. “Early classification of

time series by simultaneously optimizing the accuracy and earliness.” IEEE

Transactions on Neural Networks and Learning Systems (2017).

[16] R. T. Olszewski. Generalized feature extraction for structural pattern

recognition in time-series data. No. CMU-CS-01-108. Carnegie Mellon

University, Pittsburgh, PA. 2001.

[17] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. “A review of

novelty detection.” Signal Processing 99 (2014): 215-249.

[18] F. Petitjean et al. “Dynamic time warping averaging of time series allows faster

and more accurate classification.” In ICDM on, pp. 470-479. IEEE, 2014.

[19] F. Petitjean, A. Ketterlin, and P. Gançarski. “A global averaging method for

dynamic time warping, with applications to clustering.” Pattern Recognition 44,

no. 3 (2011): 678-693.

[20] D.M.W. Powers. “Evaluation: from Precision, Recall and F-measure to ROC,

Informedness, Markedness and Correlation.” Journal of Machine Learning

Technologies, 2(1), 37-63. 2011.

[21] Project website: https://sites.google.com/view/gbatch.

[22] P. Qiu. Introduction to statistical process control. CRC Press, 2013.

[23] C. A. Ratanamahatana and E. Keogh. “Making time-series classification more

accurate using learned constraints.” Proceedings of the 2004 SIAM

International Conference on Data Mining. Society for Industrial and Applied

Mathematics, 2004.

[24] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for

spoken word recognition.” IEEE transactions on acoustics, speech, and signal

processing 26.1 (1978): 43-49.

[25] D. F. Silva, G. E. A. P. A. Batista, and E. Keogh. “Prefix and suffix invariant

dynamic time warping.” Data Mining (ICDM), 2016 IEEE 16th International

Conference on. IEEE, 2016.

[26] P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli. “Matching incomplete

time series with dynamic time warping: an algorithm and an application to post-

stroke rehabilitation.” Artificial intelligence in medicine 45.1 (2009): 11-34.

[27] Trendminer. Video retrieved on 4/15/2018 www.trendminer.com/use-case-

compare-current-batch-to-golden-batch-fingerprint/.

[28] US Department of Health and Human Services, Food and Drug Administration.

“Grade A Pasteurized Milk Ordinance 2015 Revision.” 2015.

[29] E. Wang, Z. Yu, and P. Collings. “Dynamic control strategy of a distillation

system for a composition-adjustable organic Rankine cycle.” Energy 141

(2017): 1038-1051.

[30] R. Wojewodka and T. Blevins. “Data Analytics in Batch Operations.” Control

Global. May 4, 2008. Accessed April 14, 2018.

https://www.controlglobal.com/articles/2008/164/.

[31] C.-C. M. Yeh, N. Kavantzas, and E. Keogh. “Matrix profile VI: Meaningful

multidimensional motif discovery.” In Data Mining (ICDM), 2017 IEEE

International Conference on, pp. 565-574. IEEE, 2017.

[32] C.-C. M. Yeh et al. “Time series joins, motifs, discords and shapelets: a

unifying view that exploits the matrix profile.” DMKD 32, no. 1 (2018): 83-

123.

[33] Y. Zhu et al.. “Exploiting a novel algorithm and GPUs to break the ten

quadrillion pairwise comparisons barrier for time series motifs and joins.” KIS

(2018): 1-34.

[34] A. Zia, Y. Sharma, V. Bettadapura, E. L. Sarin, and I. Essa. ”Video and

accelerometer-based motion analysis for automated surgical skills assessment.”

International journal of computer assisted radiology and surgery 13, no. 3

(2018): 443-455.

