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ABSTRACT 

In manufacturing, there is the Golden Batch concept. A golden 

batch is an idealized realization of the perfect process to produce 

the desired item, typically represented as a multidimensional time 

series of temperatures, pressures, flow-rates and so forth. The 

golden batch is sometimes produced from first-principle models, 

but it is typically created by recording a batch produced by the 

most experienced engineers on carefully cleaned and calibrated 

machines. In most cases, the golden batch is only used in post-

mortem analysis of an unexpectedly inferior quality product as 

plant managers attempt to understand where and when the last 

production attempt went wrong. In this work, we make two 

contributions to golden batch processing. We introduce an online 

algorithm that allows practitioners to understand if the process is 

currently deviating from the golden batch in real-time, allowing 

engineers to intervene and potentially save the batch. This may be 

done, for example, by cooling a boiler that is running 

unexpectedly hot. In addition, we show that our ideas can greatly 

expand the purview of golden batch monitoring beyond industrial 

manufacturing. In particular, we show that golden batch 

monitoring can be used for anomaly detection, attention focusing, 

and personalized training/skill assessment in a host of novel 

domains. 
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1  Introduction 

Batch production is a process used in many industries, in 

which goods are produced in groups (batches). Each batch goes 

through one stage of the production process before moving on to 

the next stage. Some examples of batch production (informally, a 

recipe) are the manufacture of food and beverages, pharmaceutics, 

chemicals, inks, paints, petrochemicals, and adhesives. Depending 

on the items being produced, a single batch cycle may take from 

seconds to several days. Most production efforts are heavily 

monitored by sensors, for example some chemical productions 

have over a thousand time series continuously recorded [30]. 

To help in a post-mortem analysis of an inferior batch, 

engineers use the concept of the Golden Batch. The golden batch 

is the ideal batch against which all other batches are compared. It 

may be produced from first principle physics, or simply by having 

the best engineers scrupulously cleaning the apparatus and 

producing a batch under ideal conditions. We argue that confining 

the use of golden batch comparisons to offline considerations 

represents a lost opportunity. Comparing to the golden batch in 

real-time offers the possibility to: 

• Intervene: Many batch productions last hours to days. For 

processes running at these time scales it may be possible to 

save a production run that is drifting towards an unacceptable 

product, by physically intervening in some way. One 

example of this intervention is seen when manually opening 

an axillary valve to cool an overheating ingredient. 

• Gracefully Abandon: In the cases in which a batch is 

irretrievably lost, it would be useful to know this as soon as 

possible. Not only does this save time, it may prevent 

damage to equipment and raw material. For example, if a 

metal cutting robot chips a blade and is allowed to continue 

cutting, it may eventually damage the actuators that move it. 

Replacing the blades is a cheap and quick fix, but replacing 

the actuators will result in hours of costly downtime. 

However, comparing the telemetry of two batch processes is 

difficult, since there are two sources of variability: 

• Processes typically exhibit some allowable batch-to-batch 

variability. These can be caused by random variations in the 

ingredients, or in the weather (temperature, air-pressure, 

humidity). These variations may also be systematic. For 

example, a valve may slowly clog over time, requiring 

increasingly a longer time to fill a vat with some ingredients.  

• The process may vary in an unacceptable way; for example, 

moving a dairy ingredient too fast through a thermiser 

process to allow it to become properly pasteurized [28], or a 

welding robot continuing to weld after tip-contact has 

reduced the ability of the welder to produce clean welds [12]. 

While one type of variation is inconsequential, and the other is 

catastrophic, a classic “lock-step,” one-to-one comparison such as 

Euclidean distance is unlikely to be able to tell the difference. 

Consider the small synthetic example shown in  

Figure 1. 

The result is unintuitive. While the bad batch has a clear 

semantic difference to the reference golden batch, it is much 

closer to it than the good batch is. It is only with very careful 
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inspection that we can see why. The good batch has some 

“warping” in time. Most real-world realizations of a batch process 

will have such slight variations in time. For example, a 

pressurization step may take a little longer on a cold day, but the 

next day the humification step may go faster because it happened 

to be raining. Figure 2.top shows such example in a delayed 

coker, a machine used in refining petrochemicals. 

 

Figure 1: A toy example of a Golden Batch, compared to a 

good batch and a bad batch under the Euclidean distance. 

One way to become less sensitive to slight distortions in time 

is to compare the batches using global statistical features, say the 

maximum and minimum values. However, if we do this, we 

would have no reason to reject the bad batch shown in Figure 1. 

Given the above, we need a comparison mechanism that is 

invariant to small local shifts in time, but insists that the right 

processes happen, and in the right order. The reader may 

appreciate that Dynamic Time Warping (DTW) is potentially such 

a distance measure [18]. To see this, and to demonstrate that such 

timing differences often occur in real-word data, consider Figure 

2.bottom. 

 

Figure 2: top) Two 44.4 hour runs of a delayed coker. While 

the runs are very similar, at about hour nine the current 

batch begins to drift behind the golden batch, eventually 

lagging by 27 minutes by around hour eleven, before moving 

back into phase. bottom) DTW is invariant to such local 

timing differences. 

However, DTW is typically only defined for batch data and 

reports only a global difference score [23][24]. In this work, we 

will show how we can generalize DTW to work online and report 

a localized measure of compliance to an ideal template. Moreover, 

we will show that our local DTW-based compliance measure 

(hereafter DCM) is amnestic. That is to say, if a sensor reports 

that some measure is drifting out of compliance, and through a 

corrective action, it is brought back into tolerance, the compliance 

measure will reflect that. This contrasts with a classic incremental 

DTW score, which are cumulative and monotonically increasing 

[1]. 

Before delving into our proposed algorithms, we will take the 

time in the following two sections to discuss the actionability of 

golden batch monitoring, and to expand the purview of our ideas 

by explaining how they can used in non-industrial settings. 

1.1  The Actionability of Golden Batch 

Monitoring 

Given that we are proposing to move from an offline to an 

online analytics model, we need to consider the actionability of 

real-time monitoring. We see our method as allowing the 

following: 

• Attention Focusing Algorithms: For video surveillance, it is 

often the case that there are thousands of cameras, but only a 

single human to monitor them all. To bridge this gap, 

attention focusing algorithms are algorithms designed to 

produce an everchanging prioritized “top ten” type list of 

views to monitor. We envision doing the same with golden 

batch monitoring [5]. As shown in Figure 3, there are many 

commercial tools for monitoring time series. While these 

tools have various built-in automatic analytics, they also rely 

on human inspection of the evolving process. However, there 

are many industrial processes that have 1,000+ time series. 

We envision using the current value of DCM as an index to 

prioritize human inspection. 

 

Figure 3: A commercial tool for monitoring industrial 

process data. Here the user has chosen to monitor just two 

time series, out of perhaps thousands. 

• Anomaly Detection: In some cases, it may be possible to 

learn the maximum acceptable levels for the DCM to deviate, 

and then sound an alarm if that threshold is reached. We test 

this idea in great detail in Section 5.2. 

• Personalized Training and Skill Assessment: The idea of 

golden batch comparison has been adapted or rediscovered 

by several researchers for the task of personalized training in 

fields as diverse as music, sports, and surgery [8]. However, 

most of this work is only used for after-the-fact analysis. The 

ideas introduced in this paper allow us to do this in real-time. 

The rest of this paper is organized as follows. In Section 2, we 

consider related work. Section 3 introduces all the necessary 

definitions and notation. In Section 4, we explain our 

methodology, including some variants that may be useful, 

depending on the domain of interest. We perform a 

comprehensive evaluation in Section 5 before offering 

conclusions and directions for future research in Section 6. 
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2  Related Work 

Our review of related work is brief. To the best of our 

knowledge, there is no commercial tool that offers the capability 

that we are proposing. This, in spite of the fact that there are at 

least twenty major companies offering software products in this 

space, including Seeq (see Figure 3, Rockwell, Emerson 

Automation Experts, AspenTech, Honeywell, Trendminer, and the 

like. Many of these products do have a golden batch product, 

however these products are mostly limited to editing/creating the 

golden batch. Once created, the user is invited to monitor by 

simply visualizing the incoming batch. For example, a training 

video for Trendminer suggests the user ask themselves, “as this 

batch is going on, how does it visually compare to my (golden 

batch)” [27] (our emphasis). AspenTech's Aspen ProMV 

multivariate analysis product does have extensive batch 

monitoring capabilities, but does not support pattern comparisons 

based on a golden batch [1]. 

The problem of early classification in time series is 

superficially similar to the task at hand, see [15] and the 

references therein. However, that problem is a supervised 

problem, and requires copious training data in at least two classes. 

In contrast, we may have only a single positive exemplar 

available. 

Many principles of golden batch comparison have been 

rediscovered by [8] for the task of personalized training for 

surgical skills, moreover, they also use DTW for this purpose. The 

feedback provided is claimed to be real-time, however this claim 

needs to be qualified. It is real-time in the sense that during a 

single operation, shortly after the surgeon completes an atomic 

action such as suturing or knot-tying, feedback can be provided. 

However, they cannot provide feedback during an atomic action. 

In contrast, our proposed approach can do exactly that. 

3  Definitions and Notation 

We begin by defining the data type of interest, time series: 

Definition 1: A time series 𝑇 ∈ ℝ𝑛  is a sequence of real-

valued numbers 𝑡𝑖 ∈ ℝ ∶ 𝑇 =  [𝑡0, 𝑡1, . . . , 𝑡𝑛−1]  where 𝑛  is the 

length of 𝑇. 

A specific type of time series is defined for the golden batch 

monitoring problem which is the problem of interest. 

Definition 2: A golden batch 𝐺 ∈ ℝ𝑛  is a time series that 

stores the “ideal” outputs from a process sampled by a sensor 1. 

Note that we use the term “process” here in the most general 

sense. While we are mostly interested in industrial processes, our 

ideas may have implications for medical processes [8][26][34], 

sports performances, artistic performances [8] and so on. 

With the term “golden batch” defined, we are ready to 

introduce the research problem addressed in this work. 

Definition 3: The golden batch monitoring problem requires a 

real-time system that provides quantitative measurement on how a 

monitored time series differs with a set of golden batches at each 

                                                                 
1There is no standard terminology for this concept, it is also called 

Golden Fingerprint [27], Golden Profile, Ideal Batch etc. 

point in time. Formally, given a time series that is being 

monitored 𝑇 ∈ ℝ𝑛  and 𝑘 golden batches 𝑮 = [𝐺𝑖|0 ≤ 𝑖 < 𝑘, 𝐺𝑖 ∈

ℝ𝑚], a golden batch monitoring system should return a vector 

𝐸 ∈ ℝ𝑛 where 𝐸[𝑖] stores the difference/error between 𝑇[0: 𝑖] and 

𝑮. 

Note that we speak of a set of golden batches. This set is often 

of size one. However, sometimes the process may have 

polymorphic behaviors that are best modeled by multiple golden 

batches. For example, for any large-scale industrial process the 

machinery is typically exposed to the elements, thus the plant 

engineers may have a hot-day golden batch and a cold-day golden 

batch. In one extreme, the plant engineers may add all successful 

batches to the golden batch set. We will further address both the 

single and the polymorphic cases in Section 5.2. 

In our definition, the golden batches are all of length m, but 

each such discovered golden batch may have slightly different 

lengths. We can fix this by simply interpolating all batches to the 

same length. No information is lost by this; each batch is really 

encoding information about local ordering and local timing of 

events, the DTW itself will give invariance to the global timing 

differences, which are typically quite small (on the order of a few 

percent). 

As noted in Definition 3, we need to monitor the error between 

the most recently arrived data points in current batch with the 

golden batch under optimal alignment. Such information can be 

computed by DTW, and we store the result errors in an 

accumulated error matrix. Note, such matrix is frequently referred 

to as warping matrix in literature, but we name it the accumulated 

error matrix for clarity. Figure 4 shows the optimal alignment 

between a golden batch and the time series in current batch. 

 

Figure 4: The optimal alignment between the most up-to-

date time series in current batch with the golden batch. 

Definition 4: An accumulated error matrix 𝑴 ∈ ℝ𝑛×𝑚  is a 

matrix stores the amount of deviation (or error) accumulated over 

time when comparing all prefix of two given time series under 

optimal alignment. Formally, given two time series 𝑋 ∈ ℝ𝑛  and 

𝑌 ∈ ℝ𝑚, 𝑴[𝑖, 𝑗] = 𝐷𝑇𝑊(𝑋[0: 𝑖], 𝑌[0: 𝑗]). 

This accumulated error matrix 𝑴 stores the classic incremental 

DTW scores between all pairs of prefix from two given time 

series. 

Before moving on, we note that while we use the term “error” 

here for consistency with the literature [12][29], it may sound 

unnecessarily pejorative in this context. Most of the “error” is just 

natural and allowable variability. 

As noted in [30], “it may be important to control some 

parameters tightly, while other measurements may vary 

significantly without affecting the produce quality.” We need a 

way to represent this variable adherence constraint to golden 

batch. The idea of warping constraint window is a classic concept 

0 250

Golden Batch

Current Batch
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in DTW that can be co-opted for this task [6]. As shown in Figure 

5.left.top, the fixed warping constraint window of 4 is visualized 

with respect to an accumulated error matrix 𝑴. We only need to 

compute the highlighted elements (gray) of 𝑴. 

 

Figure 5: DTW can be constrained by only allowing it to 

visit the cells marked in gray. In left.top we show a classic 

fixed warping constraint window, and in left.bottom we show 

a growing warping constraint window, that is designed to 

model accumulating “drift” over time. The need for this 

growing constraint is reflected in this commercial dataset 

(right). 

Moreover, consider Figure 5.right which shows a screen dump 

of Trendminer’s golden batch tool monitoring three variables. The 

“envelopes” show the variability from six successful runs.  Note 

that the timing uncertainty/variability increases over time. This is 

to be expected, as the amount of misalignment between two time 

series can accumulate over time as they drift apart. As shown in 

0.left.bottom, by using a suitable warping constraint window, we 

can represent such a linearly growing temporal drift. Once again, 

the warping constraint window is visualized with respect to an 

accumulated error matrix 𝑴, and we only need to compute the 

highlighted elements (gray) of 𝑴. 

To summarize or “flatten” the matrix 𝑴 into a vector or time 

series, we define the accumulated error profile: 

Definition 5: An accumulated error profile 𝐸 ∈ ℝ𝑛 is a time 

series which summarizes an accumulated error matrix 𝑴  by 

extracting the classic incremental DTW score between all prefix 

of one of the given time series pair with the best aligned prefix of 

the other time series within warping constraint window. Formally, 

given an accumulated error matrix 𝑴 ∈ ℝ𝑛×𝑚 (of time series 𝑋 ∈

ℝ𝑛  and 𝑌 ∈ ℝ𝑚 )  and a warping constraint window 𝑤 , 𝐸[𝑖] =

min(𝑴[𝑖, 𝑖 − 𝑤: 𝑖 + 𝑤]) = min
𝑖−𝑤≤𝑗≤𝑖+𝑤

𝐷𝑇𝑊(𝑋[0: 𝑖], 𝑌[0: 𝑗]). 

Without loss of generality, for the remainder of this work we 

assume a fixed warping constraint window for clarity of 

presentation. In the case of dynamic warping window, the 

warping constraint window used for the 𝑖th element in 𝐸 should be 

computed by a warping constraint window function  𝑤(𝑖). Figure 

6 shows an example of accumulated error profile between a 

golden batch and the time series in current batch. The error in 

accumulated error profile increases dramatically when the current 

batch deviates from the golden batch. 

Because the values in 𝐸 are classic incremental DTW scores, 

the values in the time series are cumulative and thus 

monotonically increasing over time. However, we want a score 

that is “forgiving” or amnesic. Because batches can take many 

hours, if we signal a problem and corrective action is taken, we 

want the score to be allowed to return within normal limits. Thus, 

we define the localized error profile: 

Definition 6: A localized error profile 𝐸𝑙 ∈ ℝ𝑛 is a time series 

that stores the local DTW-based Compliance Measure or DCM, 

which is non-cumulative and non-monotonically increasing. 

Figure 6.bottom shows an example of localized error profile 

between a golden batch and the time series in current batch. Note 

the error caused by the missing rectified half sine wave only 

induces error locally in localized error profile. 

 

Figure 6: top to bottom) A golden batch. A (bad) current 

batch which misses a rectified half sine wave. The 

accumulated error profile. The localized error profile 

returns to a low value after peaking during the anomalous 

period. 

The golden batch monitoring problem can be considered as a 

special case of the anomaly detection problem [17] with the 

following properties: 

1. The training data is available but only contains example(s) of 

the “normal” class. 

2. The training data is extremely scarce.  

3. The test data arrives in a streaming fashion. 

To interpret golden batch monitoring as an anomaly detector, 

we can simply set some maximum permissible value for the error 

profile. This value could be set from first principles, or as we 

show in Section 5.2, learned directly from training data. Our 

method can be considered as a spiritual successor to one of the 

most competitive anomaly detection method [4][13][17] tailoring 

toward anomaly detection problem with aforementioned 

properties. 

However, it is important to note that golden batch monitoring 

is more general than classic anomaly detection as it is typically 

understood, as it allows for the possibility to take corrective action 

before the situation becomes dire. 

4  Methodology 

We are finally in a position to formalize our algorithms. We 

begin with the single golden batch case, before generalizing to the 

polymorphic golden batch case. 

4.1  Online DTW Algorithm: Single Batch Case 

Given a golden batch 𝐺  and a time series 𝑇  that we are 

monitoring, the localized error profile 𝐸𝑙  is computed using the 

online DTW algorithm (see Algorithm 1) modified from Ψ-cDTW 

[25]. Note the pseudocode is described as a batch algorithm 

(opposed to online algorithm) for clarity of presentation; we will 

discuss the modifications that allow Algorithm 1 to be computed 

in an online fashion while introducing it. 

0 500
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Algorithm 1: The OnlineDTW algorithm 

Procedure OnlineDTW(𝐺, 𝑇, 𝑤) 
Input: a golden batch 𝐺, a time series 𝑇, and warping constraint 
window 𝑤  
Output: localized error profile 𝐸𝑙 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

𝑛𝐺 
←  𝑙𝑒𝑛𝑔𝑡ℎ(𝐺), 𝑛𝑇 ←  𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) 

𝐺 ←  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐺) 

𝑴 ←  𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥_𝑜𝑓_𝑠𝑖𝑧𝑒(𝑛𝑇, 𝑛𝐺) 

𝑴[0: 𝑤, ∶] ←  0, 𝑴[: , 0: 𝑤]  ←  0 

for 𝑖 ←  0 to 𝑛𝑇 

    𝑇[𝑖]   ←  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑇[𝑖] ) 

    for 𝑗 ←  𝑚𝑎𝑥(0, 𝑖 –  𝑤) to 𝑚𝑖𝑛(𝑛𝐺, 𝑖 +  𝑤) 

        𝑴[𝑖, 𝑗]  ←  𝑎𝑏𝑠(𝑇[𝑖] –  𝐺[𝑗])  +  

            𝑚𝑖𝑛(𝑴[𝑖 –  1, 𝑗], 𝑴[𝑖, 𝑗 –  1],𝑴[𝑖 –  1, 𝑗 –  1]) 

    end for 

    𝐸[𝑖] ←  𝑚𝑖𝑛(𝑀[𝑖, 𝑚𝑎𝑥(1, 𝑖 –  𝑤): 𝑚𝑖𝑛(𝑛𝐺, 𝑖 +  𝑤)])  

    𝐸𝑙[𝑖] ←  𝐸[𝑖] −  𝐸[𝑖 − 1] 

end for 

return 𝐸𝑙 

In line 1, the lengths of both input time series 𝑇  and 𝐺  is 

stored. Since the length of 𝑇 is unavailable in the online scenario, 

we can simply initialize it as 𝑛𝐺 + 𝑤. The maximum meaningful 

length of 𝑇 is limited by the warping constraint 𝑤 as any point in 

𝑇 beyond 𝑛𝐺 + 𝑤 cannot be matched with any point in 𝐺. Next, in 

line 2, 𝐺  is normalized using a normalization function designed 

specifically for the data domain in question (We will expand on 

this in Section 4.4). In line 3, the accumulated error matrix 𝑴 is 

initialized as a matrix of infinity values. Note in the pseudocode 

the matrix is initialized as a full matrix with space complexity of 

𝑂(𝑛𝐺  𝑛𝑇). Because of the warping constraint 𝑤, majority of the 

off-diagonal entries are not used. Only 𝑂(𝑚𝑖𝑛(𝑛𝐺 , 𝑛𝑇)𝑤) space is 

needed to store the relevant information. In line 4, 𝑴 is prepared 

based on [25] to relax the prefix endpoint constraint. 

From line 5 to line 13, the loop is advanced by one iteration 

each time a new data point in 𝑇 is received. In the case where the 

length of 𝑇 is unknown in advance, the for-loop can be replaced 

with a while-loop which breaks when receiving the end-of-time-

series signal. In line 6, the received value is normalized using 

appropriate normalization function. From line 8 to line 11, we 

update 𝑴 using the standard DTW recurrence relation [11][24]. 

In line 11 and line 12, the accumulated error profile 𝐸 and the 

localized error profile 𝐸𝑙 are updated. Under online scenario, we 

can yield/emit the newest element of 𝐸𝑙 here. We do not use the 

relaxed suffix endpoint constraint [25] as it has the freedom to 

choose either the 𝑖th point in 𝐺 and/or the 𝑖th point in 𝑇 to compute 

the latest value in 𝐸 . Because the purpose of Algorithm 1 is 

monitoring 𝑇, the most recent (𝑖th) point in 𝑇 should be considered 

to allow the earliest possible anomaly detection. In other words, 

we are using the suffix endpoint constraint proposed in [26] 

instead of the one proposed in [25]. See Figure 7 for an 

illustration of the adopted suffix endpoint constraint. The 

localized error profile is computed simply by taking the difference 

between current value in 𝐸 (i.e., 𝐸[𝑖]) with the previous value in 

𝐸  (i.e., 𝐸[𝑖 − 1]). One may smooth 𝐸𝑙  with moving average for 

better visual representation. Finally, the result localized error 

profile 𝐸𝑙 is returned in line 14. 

 

Figure 7: Given the golden batch and the first 𝒊 points of a 

time series, the 𝒊th term in the accumulated error profile 𝑬 is 

computed by locating the minimal value from the 𝒊th row of 

accumulated error matrix 𝑴. The 𝒊 th row of 𝑴 is labeled 

green in the figure. 

4.2  Online DTW Algorithm: Polymorphic 

Golden Batch Case 

Given a golden batch set 𝑮 and a time series 𝑇 that we are 

monitoring, the localized error profile 𝐸𝑙,𝑜𝑢𝑡  is computed using 

Algorithm 2, which calls Algorithm 1 as a subroutine. 

Algorithm 2: The OnlineDTW_P algorithm 

Procedure OnlineDTW_P(𝑮, 𝑇, 𝑤) 
Input: a set of golden batch 𝑮, a time series 𝑇, and warping constraint 
window 𝑤  
Output: localized error profile 𝐸𝑙,𝑜𝑢𝑡 

1 

2 

3 

4 

5 

6 

7 

8 

9 

𝑛𝑇 ←  𝑙𝑒𝑛𝑔𝑡ℎ(𝑇), 𝑘 ←  𝑠𝑖𝑧𝑒(𝑮) 

for 𝑖 ←  0 to 𝑛𝑇 

    for 𝑗 ←  0 to 𝑘 

        𝑬[𝑗, 𝑖], 𝑬𝑙[𝑗, 𝑖] ←  𝑂𝑛𝑙𝑖𝑛𝑒𝐷𝑇𝑊(𝑮[𝒋], 𝑇[𝑖], 𝑤) 

    end for 

    𝑖𝑑𝑥 ←  𝑎𝑟𝑔𝑚𝑖𝑛 (𝑬[: , 𝑖]) 

    𝐸𝑙,𝑜𝑢𝑡[0: 𝑖] ←  𝑬𝑙[𝑖𝑑𝑥, 0: 𝑖] 

end for 

return 𝐸𝑙,𝑜𝑢𝑡 

In line 1, the length of input time series 𝑇 and the number of 

golden batch time series in 𝑮 are stored in 𝑛𝑇 and 𝑘 respectively. 

The variable 𝑛𝑇 is only used for cleaner presentation and is not 

required in real implementation. From line 2 to line 8, we process 

each newly received data point of 𝑇 in each iteration. From line 3 

to line 5, we update both 𝑬 and 𝑬𝑙 using the latest point of 𝑇. Note 

the call to the 𝑂𝑛𝑙𝑖𝑛𝑒𝐷𝑇𝑊 only advances the outer loop (i.e., line 

5 to line 13 in Algorithm 1) by one. In line 6, we identify the best 

(i.e., most similar in terms of DTW score) golden batch, and in 

line 7, we point the current localized error profile 𝐸𝑙,𝑜𝑢𝑡 to the 𝑬𝑙 

computed using the best golden batch. Lastly, we return the 

localized error profile 𝐸𝑙,𝑜𝑢𝑡 in line 9. The overall time complexity 

of Algorithm 2. is 𝑂(min(𝑛𝐺 , 𝑛𝑇) 𝑤𝑘). 

4.3  Generalization of Online DTW Algorithm 

The algorithm we outlined in Algorithm 1 computes the 

accumulated error 𝐸  for a univariate time series. As with the 

original DTW algorithm [11][24], our algorithm can be trivially 

modified for other types of sequential data such as multivariate 

time series or symbolic sequences by 1) changing the 

golden batch

tim
e

 series
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normalization function at line 2 and 6 (e.g., see Section 4.4,) and 2) 

changing the distance function at line 8 (i.e., replace abs(𝑇[𝑖] – 

𝐺 [ 𝑗 ]) with appropriate distance function (e.g., norm of the 

elementwise difference between vector 𝑇 [ 𝑖 ] and 𝐺 [ 𝑗 ] or sub-

dimensional distance [31]). 

In addition to the trivial modification outlined above, one 

nontrivial modification which turns the point-versus-point 

warping distance computation into subsequence-versus-

subsequence warping distance computation is introduced here. 

The subsequence-versus-subsequence version is useful when the 

user is interested in aligning local shapes between golden batch 𝐺 

and time series 𝑇 instead of the values of each individual points 

(i.e., shape-based alignment is amplitude/offset invariant). The 

naïve implementation of the subsequence-by-subsequence idea is 

simple. Given a subsequence length 𝑚, we first apply a sliding 

window of size 𝑚 with hop 1 to extract all subsequence of 𝐺 and 

𝑇 then store the extracted subsequences in respective list 𝐺𝑚 and 

𝑇𝑚  (where 𝐺𝑚[0]  contains the first 𝑚  sized subsequence of 𝐺 ). 

Then, we input 𝐺𝑚 and 𝑇𝑚 to a modified version of Algorithm 1 

where 1) line 2 and 6 are removed, and 2) the distance function at 

line 8 is changed to the function that computes z-normalized 

Euclidean distance. 

It is easy to understand the correctness of the naïve 

implementation, but the time complexity (i.e., 

𝑂(𝑚𝑖𝑛(𝑛𝐺 , 𝑛𝑇)𝑤𝑚)) would be suboptimal because we ignore the 

fact that there are 𝑚 − 1 points overlapped between consecutive 

subsequences. We can reduce the time complexity to 

𝑂(𝑚𝑖𝑛(𝑛𝐺 , 𝑛𝑇)𝑤)  by using the same computational scheme 

which accelerates STOMP [32][33]. Due to space limitations, we 

will not describe the computational scheme in this paper. Those 

interested can refer to [32][33] for details about the computational 

scheme, and the optimized source code for online DTW using this 

scheme can be download from [21]. 

Another generalization that can be made to Algorithm 1 is 

replacing the fixed-width warping constraint window with a 

dynamic warping constraint window (see Figure 5 and its 

accompany paragraphs). The modification is identical to the 

standard DTW algorithm [23]. 

Because the evaluation of the last two aforementioned 

modifications is beyond the scope of this paper, we leave such 

considerations for future work. 

4.4  Normalization 

Normalization is crucial in the case of multidimensional time 

series when each dimension is measured by different types of 

instruments (e.g., thermometer, pressure gauge, or flow-rates 

gauge) [32][33]. Because the measurements from different 

instruments carry different units (e.g., kelvin, pascal, or cubic 

meters per second), numbers from different dimensions are not 

commeasure. If we sum the error from different dimensions 

without normalization, the result localized error profile would be 

dominated by the dimension with largest range. For example, in 

the Wafer database [16], the range of the six dimensions are {9, 

234, 10, 4, 1, 61}; the first, third, fourth, and fifth 

dimension have little to no effect to the localized error profile 

compared to the second dimension. Such problem is usually 

addressed by applying z-normalization [18] or 0-1 normalization 

to each dimension of the multidimensional time series. 

5  Experimental Evaluation 

To ensure that our experiments are reproducible, we have built 

a website which contains all data/code/raw spreadsheets for the 

results [21]. In addition, some experiments are augmented by 

videos, showing the results being computed in real time. 

We had access to datasets from a major oil and gas industrial 

analytics company to bootstrap and motivate this research effort. 

However, this industrial sector is notoriously secretive and 

unwilling to share data. This conflicts with our academic policy of 

complete transparency and reproducibly. Thus, we only evaluate 

on proxy datasets, and existing public datasets that we can archive 

and share in perpetuity [21]. 

5.1  A Case Study in Oil and Gas Processing 

We begin with a simple demonstration of our ideas, before 

considering a more qualitative evaluation in subsequent sections. 

As the reader will appreciate, the oil and gas industry is 

reluctant to share real data, particularly of faults. In this section, 

we revisit the real dataset introduced in Figure 2 and induce a 

synthetic fault. While the fault is synthetic, it is based on a real 

problem communicated to us by a petrochemical engineer. In 

Figure 8 we show the DCM computed for the example introduced 

in Figure 2. 

 

Figure 8: The DCM computed between the golden batch 

(blue/bold) and the current batch (green/fine) shown in 

Figure 2. 

We used warping constraint window of 30 minutes, which was 

suggested by the petrochemical engineer. Note that the DCM 

never rises above 1.5, in spite of the fact that the beginning of the 

heat-up phase is a little slower in the current batch. 

 

Figure 9: The DCM computed using the same golden batch 

(blue/bold) shown in Figure 8 and the current batch 

(green/fine) under the effect of recreated freak rainstorm. 

Delayed cokers are typically so large that they are not housed 

in a building, but left outside exposed to the elements. A 

petrochemical engineer recalled a fault he had seen a handful of 

times in his career. In most of the Middle East’s oil processing 

regions, the summer days are uniformly hot with temperature 

between 45° C and 50° C and near zero chances of precipitation, 
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ideal for oil processing. However, every few years, some regions 

can see a freak rainstorm lasting for just a few minutes. These 

brief rainstorms can quickly cool the unprotected boiler, as we 

have recreated in Figure 9. 

The sudden cooling can cause foaming and heater fouling, 

which may require “pigging” (mechanical coke removal), which 

is extremely expensive. While it is not possible to heat up the 

boiler fast enough to mitigate the rain’s cooling effect, it may be 

possible to reduce the infeed rate to reduce the damage. Here, the 

short lag between the cooling event and the dramatic rise of the 

DCM would allow such corrective interventions. As shown in 

Figure 9.bottom, the DCM score significantly increases at the 

relevant location. Moreover, as the temperature is brought back 

into compliance, the DCM score decreases to normal levels. 

5.2  Large Scale Experiments 

To allow large-scale experiments with stochastic element, we 

repurpose the eight-class Mallat data set [14]. As shown in Figure 

10, this data set is at least, by visual inspection, a good proxy for a 

four-stage process in petrochemical processing [22][27][30]. 

 

Figure 10: Samples of data from the Mallat dataset, showing 

multiple instances in each class to hint that the natural 

variability. While a synthetic dataset, they are highly 

reminiscent of real industrial traces. 

We selected the 𝑘th class from the Mallat data set and denoted 

all the time series from it as “normal” and the other time series as 

“abnormal” (𝑘 ∈ ℤ: 1 ≤ 𝑘 ≤ 8]). We created the training data set 

by randomly including eight time series from the normal class, 

and we added all the excluded time series (both normal and 

abnormal) to the test data set. 

We repeated this procedure 32 times for each class. In other 

words, we use the Mallat data set 256 times to generate training 

and test data splits for each trial of experiment. 

Given that we have eight exemplars to act as the golden batch, 

but plan to only use one (for evaluating the single batch system), 

we need a policy to obtain our single true golden batch. We 

consider the follows two options: 

• We construct the golden batch set by randomly selecting a 

time series from the training data set (i.e., the naïve method). 

• We construct the golden batch set by averaging time series 

from the training data set. It has been demonstrated that 

DTW averaging can be very useful for producing idealized 

exemplar for classification and clustering [18][19], and as 

such, it is natural to ask if it has utility here. 

For each time series in the test data set, we compute the 

localized error profile 𝐸𝑙 using Algorithm 1, and then we use the 

Maximum DCM (𝑀𝐶𝑀) (i.e., the maximum value in 𝐸𝑙) as the 

anomaly score. 

As the objective is to detect anomalies, we need a threshold for 

the anomaly score. We set the threshold as 𝑀𝐶𝑀T   =

  𝑚𝑒𝑎𝑛(𝑀𝐶𝑀) + 3 𝑠𝑡𝑑(𝑀𝐶𝑀)  where the 𝑚𝑒𝑎𝑛(𝑀𝐶𝑀)  and the 

𝑠𝑡𝑑(𝑀𝐶𝑀)  are estimated from the MCM s computed using the 

training data set. This idea is adapted from the classic Three-

sigma Limit in statistical process control [22]. Note, in the case 

where multiple time series are presented in the golden batch set 

we estimated the threshold for each golden batch time series 

separately. The learned threshold 𝑀𝐶𝑀T  can also be used to 

normalize 𝐸𝑙  (i.e., �̅�𝑙 = 𝐸𝑙/𝑀𝐶𝑀T ), so the �̅�𝑙  can be loosely 

interpreted as the probability of a time series being abnormal. 

We summarize the experimental results in Table 1 using two 

different performance measurements: F-score and AUC-ROC 

[20]. The presented values are computed by averaging the 

experiment results over 256 trials of experiment. The DTW 

averaging technique [18][19] improves the system significantly 

over the naïve method (tested with paired sample t-test with 5% 

significance) under both performance measurements. In contrast, 

the F-score of the naïve method is even worse than the random 

guess baseline. 

Table 1: Naïve Method Versus DTW Averaging 

 F-score AUC-ROC 

Random Guess 0.935 0.500 

Naïve 0.878 0.968 

DTW Averaging 0.964 0.990 

As neither the F-score nor the AUC-ROC provides the whole 

picture for the capability of our method, we also report the 

confusion matrix. The confusion matrix is shown in Table 2. 

Because we are averaging over the 256 runs, the values are real 

numbers; however we round to integers for clarity. 

Table 2: Averaged Confusion Matrix 

n = 2,392 Predicted Good Predicted Bad Total 

Actual Good TN = 259 FP = 33 292 

Actual Bad FN = 106 TP = 1,994 2,100 

Total 365 2,027  

Because the Three-sigma Limit rule is just a heuristic “rule-of-

thumb”, the optimal threshold may be a value other than three 

standard deviation above the mean [22]. In a post-hoc analysis, we 

varied the threshold from mean minus three standard deviation to 

mean plus six standard deviation. Figure 11 shows the averaged 

F-score as we vary the threshold from conservative (i.e., 

𝑚𝑒𝑎𝑛(𝑀𝐶𝑀) − 3 𝑠𝑡𝑑(𝑀𝐶𝑀) /lower FP rate/higher FN rate) to 

liberal (i.e., 𝑚𝑒𝑎𝑛(𝑀𝐶𝑀) + 6 𝑠𝑡𝑑(𝑀𝐶𝑀) /higher FP rate/lower 

FN rate). Note positive is associated with the anomaly class while 

negative is associated with normal class. Although this shows that 

the threshold defined using the Three-sigma Limit rule is not 

optimal, the performance gained by using the optimal threshold is 

very small (i.e., from 0.965 to 0.971), and any values between -1 

and 5 will produce a result better than random guessing (i.e. the 

default rate). 

class 1 class 5

class 2 class 6

class 3 class 7

class 4 class 8
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Figure 11: The optimal threshold is 𝒎𝒆𝒂𝒏(𝑴𝑪𝑴) +
𝟏. 𝟓 𝒔𝒕𝒅(𝑴𝑪𝑴) based on this post-hoc analysis. 

It is common to have a polymorphic “normal” class in 

industrial processes. For example, the input material (infeed) for a 

chemical processing factory may have a different composition for 

different seasons (i.e., Summer and Winter [29]) or different 

origins of raw material, and this difference in the infeed causes the 

process to generate distinct time series [29]. In this case, we 

require multiple time series to represent an acceptable run in the 

golden batch set. 

To test out our method under polymorphic settings, we 

repurpose the Mallat data set in a similar fashion as our previous 

experiment, but instead of just selecting samples from a single 

class as the normal samples, we select samples from multiple 

classes to form the training set. At each trial, we first generate a 

random integer 𝑛𝑐 ∈ ℤ: 1 ≤ 𝑛𝑐 ≤ 4 which gives us the number of 

Mallat classes we draw our samples from. Next, we randomly 

choose 𝑛𝑐 classes from the Mallat class label set {𝑘 ∈ ℤ: 1 ≤ 𝑘 ≤

8} and add the samples associated with the selected class into the 

normal class set. Finally, we randomly select 16 samples from 

normal class set as the training set and leave the rest as the test set. 

As with the previous experiment, we repeat this process 256 times. 

As shown in the previous experiment, DTW averaging is 

significantly better than the naïve method. To apply the same idea 

to this problem, we adopt the 𝑘-means with DTW averaging to 

produce the golden batch set from the training data. The 𝑘 in 𝑘-

means is set to four as it is the minimum number of samples in 

golden batch to represent the normal class when 𝑛𝑐 is four (i.e., 𝑘 

is fixed to four even if 𝑛𝑐 is less than 4). For each time series in 

the test data set, we compute the localized error profile 𝐸𝑙,𝑜𝑢𝑡 

using Algorithm 2, then we use the Maximum DCM (𝑀𝐶𝑀) (i.e., 

the maximum value in 𝐸𝑙,𝑜𝑢𝑡) as the anomaly score. 

Table 3: Naïve Method Versus DTW Averaging 

 F-score AUC-ROC 

Random Guess 0.575 0.500 

Naïve (1 batch) 0.343 0.758 

DTW Averaging 

(1 batch) 
0.564 0.806 

Naïve  

(4 batches) 
0.760 0.858 

DTW Averaging 

(4 batches) 
0.875 0.896 

As in the previous experiment, we use the Three-sigma Limit 

heuristic to determine the threshold; we use F-score and AUC-

ROC [20] to measure the performance. Table 3 shows the 

performance of both naïve method and DTW averaging with 1/4 

batches. 

The DTW averaging technique with multiple batches improves 

the system significantly over the others (tested with paired sample 

t-test with 5% significance) under both performance 

measurement. Both naïve and DTW averaging with one batch’s 

resulting F-scores are worse than random guessing which further 

reinforces the need for multiple batches in polymorphic scenario. 

Again, as neither the F-score or the AUC-ROC provides the 

complete picture for the capability of our method, we also report 

the confusion matrix. Averaged over 256 runs, the result 

confusion matrix is reported in Table 4. Note that as in Table 2, 

we again rounded to integers for clarity. 

Table 4: Averaged Confusion Matrix 

n = 2,384 Predicted Good Predicted Bad Total 

Actual Good TN = 507 FP = 212 719 

Actual Bad FN = 139 TP = 1,526 1,665 

Total 646 1,738  

We performed the same post-hoc analysis as before to 

reexamine the threshold established by Three-sigma Limit rule. 

Figure 12 shows the averaged F-score as we vary the threshold. 

Although the threshold defined using the Three-sigma Limit rule 

is not optimal, the performance gained by using the optimal 

threshold is slim (i.e., from 0.875 to 0.877). 

 

Figure 12: The optimal threshold is 𝒎𝒆𝒂𝒏(𝑴𝑪𝑴) +
𝟐. 𝟓 𝒔𝒕𝒅(𝑴𝑪𝑴) based on this post-hoc analysis. 

In addition to the polymorphic cases, it is also important to test 

the method on multidimensional or multivariant time series as 

multidimensional time series is ubiquitous in domains such as 

industrial and human activity monitoring. For this purpose, we 

have tested our method on the Wafer database [16] which is a real 

dataset consisting of readings from six different sensors (e.g., 

pressure, emission, and power) during a wafer manufacturing 

process. The yield of the process is either good (or normal) or bad 

(or abnormal). 

The Wafer database consists of 1,067 normal runs and 127 

abnormal runs. To format the data for our experiments, we have 

randomly selected 𝑛𝑡  examples from the normal runs as the 

training data and left the rest as the test data. We repeat the 

experiment 32 times for each of the four different 𝑛𝑡 settings (i.e., 

8, 16, 32, and 64). Since there is only one type of normal pattern, 

we only use one batch in this set of experiment. Figure 13 shows 

the AUC-ROC as we vary the number of training data. DTW 

averaging constantly outperforms the naïve method and the 

performance does not change substantially as we vary the number 

of training data. 
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Figure 13: The DTW averaging technique improves the 

performance in all cases disregard the number of training 

data. 

As with the previous experiments, we also wish to evaluate the 

three-sigma limit rule with a post-hoc analysis under different 

numbers of training data. Figure 14 shows the F-score as we vary 

both the sigma and the number of training data. The three-sigma 

limit rule produces near optimal results when the number of 

training data is small. However, when we increase the number of 

training data, the chance of hitting the optimal (or near optimal) 

threshold decreases. The plateau around the optimal threshold 

decreases as the number of training data increases. This 

observation hints the possibility of setting the threshold as a 

function of training data set size. This is somewhat similar to the 

observation that the DTW’s warping window width should be 

decreased as increase the training set size [6]. Nevertheless, we 

leave such investigation for future work as it is beyond the scope 

of the current paper. 

 

Figure 14: The F-score as we vary both the sigma and the 

number of training data. 

5.3  Expanding the Purview of Golden Batch 

Monitoring 

In our introduction, we noted that one use of a golden batch 

monitoring system is attention focusing. This idea is most 

commonly associated with video monitoring [5], but applies in 

any circumstances where multiple evolving data sources compete 

for human attention. In this section, we show that our algorithms 

allow us to expand the notion to of attention focusing to a novel 

domain. 

The Taipei Mass Rapid Transit (MRT) system consists of 108 

stations and carries an average 2.10 million passengers per day. 

As shown in Figure 15, the number of passengers using each 

station is monitored by faregates and other sensors at a fine 

temporal resolution2 . Note that the three time series shown in 

Figure 15 look quite different, as their use is dictated by their 

relative proximity to centers of education, entertainment, 

shopping, residence, and the like. The metro-master is stationed at 

                                                                 
2 The data can be download from http://data.taipei/, however we 

have cached the exact version we used at the supporting website 

[21]. 

the headquarters in Taipei Main Station. One of her tasks is to 

monitor the demand at the stations and respond by redirecting 

trains. For example, if she notes an unexpectedly high demand, 

she reduces the train interval. Because of the lag time needed to 

prepare trains for service, timeliness is of the essence, and she 

must monitor 108 time series at once. 

 

Figure 15: The passenger counts over the first week of 

November 2015 for three different stations. 

We envision casting this task as a Golden Batch Attention 

Focusing problem. Concretely, we take the time series recorded in 

each station in the previous week and denote it as the golden batch 

for that station. We then proceed to monitor each station’s current 

week time series with the golden batch and rank them based on 

the result DCM ranking from high DCM (more “different” to 

previous week) to low DCM (as expected based on previous 

week). 

Figure 16 shows the time series from the top ten stations from 

December 27, 2015 to December 31, 2015 around midnight. 

 

Figure 16: The New Year’s Eve firework around midnight 

creates a surge in ridership, especially the stations near the 

popular firework watching spot (i.e., the first five stations) 

and major transportation hub (i.e., Taipei Main Station). 

For each station, the top time series is the golden batch, and 

the bottom time series is the time series being monitored. The red 

lines linking both time series show the alignment between the two 

weeks, with the boldness of the red line in proportion to the DCM 

value (perfect alignments are effectively invisible). 

The ridership surges in many stations due to the Taipei 

101/Miramar Entertainment Park New Year’s Eve fireworks event 

particularly for the stations near popular firework watching spots 

(i.e., the first five stations) and major transportation hub (i.e., 

Taipei Main Station). For contrast, note that the last two stations 

8 16 32 64

Number of Training Data

0.5

1.0
A

U
C

-R
O

C

naïve method

DTW averaging

Sigma

0

0.6

-3 0 3 6

F
-s

co
re

𝑛𝑡 = 8

𝑛𝑡 = 16

𝑛𝑡 = 3 

𝑛𝑡 = 64

Wanfang Community

Taipei City Hall

Fu Jen University

1. Xiangshan

3. Taipei 101

5. Xinyi Anhe

7. Shilin

2. Sun Y.-S. Memorial Hall

4. Jiannan Road

6. Taipei Main Station

8. Xiaobitan

Su Mo Tu We Th Fr Sa

Day
Su Mo Tu We Th Fr Sa

Day

107. Zhongxiao Xinsheng 108. Guting

 



KDD’19, August 2019, Anchorage, Alaska USA C.-C. M. Yeh et al. 

 

 

 

(i.e., Zhongxiao Xinsheng and Guting) consist of almost invisibly 

faint lines, suggesting that they are unaffected by the festivities. 

To further consider the utility of our ideas in this domain, we 

simulated an unexpected event, and measured how much time it 

would take to force the effected stations to rise to the top of the 

list of 108. We imagine that the area around Presidential Office 

Building unexpectedly closes due to a spontaneous demonstration 

event that happens on the last Sunday of March 2016 from 2 pm 

to 8 pm (assuming people start to gather around 1 pm). This 

forces many people leaving the NTU Hospital (which is very 

close to the Presidential Office Building) to use the Shandao 

Temple Station instead of the NTU Hospital Station during the 

demonstration. In particular, we simulate an 80% reduction in the 

volume of traffic at NTU Hospital Station and corresponding 

increase in the volume of traffic at Shandao Temple Station. Note 

the percentage change is substantially less in Shandao Temple 

Station as it is a busier station compared to the NTU Hospital 

Station. 

Here we use the previous Sunday as the golden batch. As 

Figure 17 shows, this simulated event does result in the two 

effected stations quickly become the top two at 1:51 pm, which 

gives the control center 9 minutes to react before the 

demonstration begin. For contrast, note the last two stations (i.e., 

Nanjing Fuxing and Taipei Main Station) consist of almost 

invisibly faint red lines suggesting that they are unaffected by this 

disturbance. 

 

Figure 17: Oppose to Figure 16, we only monitor in a daily 

fashion instead of weekly fashion to better show the minutely 

update (upsampled from hourly update). 

5.4  Human Performance Coaching 

The idea of personalized training and skill assessment by 

comparing time series telemetry of an idealized performance to 

subsequent attempts has been attempted in a host of domains, 

including music [9], surgical skills [8][34] and sports. However, 

in virtually all these efforts, the coaching is done offline. In a 

handful of domains, it may be possible to give the user feedback 

in real time. For example, when practicing calligraphy, the 

feedback can come in the form of visual cues (if using pen-based 

computing), or tactical feedback (if using a haptic pen [3][7]). 

With this in mind, we consider an application of our system to 

calligraphy coaching and instrument playing skill assessment. 

Calligraphy 

One common practice for learning the art of writing 

Hanzi/Kanji (i.e., Chinese characters) as a beginner is to carefully 

imitate a given example over a 3x3 grid. Figure 18 shows an 

example of such practice for the character “tea”. A beginner can 

first observe/trace the example shown in the left grid, then 

practice recreating the character in an empty grid like the one 

shown in the right. Note, for Hanzi/Kanji writing, the order of 

writing each stroke and the way to initialize/end each stroke3 is 

standardized. 

 

Figure 18: An example for the Hanzi/Kanji “tea” on a 3x3 

grid. A beginner is encouraged to learn to write the 

character by either tracing the given example in the left grid 

or redraw the character in the right grid.  The numbers 

shown in left grid are the order of writing each stroke. 

We have formulated the Hanzi/Kanji writing practice process 

as the golden batch problem in which the example provided by an 

experienced writer is the golden batch and a naïve writer is asked 

to imitate the golden batch while our golden batch method 

provides real-time feedback. That is, the DCM between the naïve 

writer’s current pen location and the golden batch can be used to 

drive a haptic feedback system to correct the naïve writer’s 

writing in real-time [7]. In our experiment, we have asked an 

experienced writer to provide 15 examples of the character “tea,” 

then we have asked a naïve writer to try his best recreating the 

writing of the experienced writer. 

Both writers utilized Livescribe Echo Smartpens to transcribe 

the character “tea” on a dotted pattern paper. When a user writes, 

an infrared camera at the tip of the smartpen detects a subtle (near 

invisible to the human eye) dot-matrix pattern on the paper. The 

dot-matrix pattern provides information about where on the page 

the writing is occurring. This information is stored as a series of 

data points containing Cartesian XY coordinates and timestamp. 

The tip of the smartpen is equipped with a switch that is sensitive 

to pressure. The switch records the timestamps at which the 

smartpen is writing or has been lifted up from the paper. This data 

is utilized to split collected data points into separate pen strokes. 

Finally, these pen strokes are transformed into 2D time series. 

We learn the golden batch from the five best attempts of the 

experienced writer (as she self-judged) with DTW averaging. 

Figure 19.left shows the learned golden batch. By computing the 

DCM between a naïve writer’s writing with the golden batch, we 

can acquire the amount of correction required for the naïve writer 

to improve himself at each individual time instance. Figure 

19.right shows the naïve writer’s writing over the golden batch. 

The thin lines shown in the figure indicate the alignment between 

the golden batch and the naïve writer’s writing where the darkness 

of the line is proportional with the amount of the correction (i.e., 

DCM). 

                                                                 
3 For example, a stroke is typically written in a top-down fashion 

for vertical stroke. 
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Figure 19: left) The golden batch learned from the 

experience writer’s examples. right) A beginner’s writing 

(green) over the golden batch.  The thin lines indicate the 

alignment between the beginner’s writing and the golden 

batch where the strength of the line indicates the strength of 

correction needed. 

In Figure 20, we have replaced the complete writing with a 

half-completed example to showcase our method’s real-time 

output in the middle of writing. Compared to the one shown in 

Figure 19.right, the character is written by a more experienced 

writer. Because the last stroke in Figure 20.right deviates from the 

golden batch, the DCMs of this stroke are stronger comparing to 

the prior written part of this character. Given only that our system 

is able to provide either a visual or haptic feedback, the writer can 

correct his/her writing in real-time. 

 

Figure 20: left) The golden batch learn from the experience 

writer’s examples. right) A half-done writing (green) over 

the golden batch.  The thin lines indicate the alignment 

between the beginner’s writing and the golden batch where 

the strength of the line indicates the strength of correction. 

Music 

Real-time performance feedback is important for learning 

musical instruments [9]. For example, if a musician plays the 

wrong note in the first chorus during practice, it is very likely that 

she will make the same mistake in the second chorus of the same 

playthrough because she may misread the music script in the same 

fashion. However, if the golden batch system notifies the 

musician in the first chorus about the misplayed note, it is possible 

the same mistake can be avoided in the second chorus. 

We use the piano arrangement of Stairway to Heaven by Led 

Zeppelin. The musical script was downloaded in MIDI format 

from [10]. We use the downloaded MIDI as the golden batch, then 

generate the batch being monitored with the following errors, 

which were suggested by a music teacher as being common 

mistakes by amateurs: 

1. We vary the start time and end time of each piano keystroke 

with a lead/lag of 𝑡~𝑁(0, 0.0 5) seconds. 

2. Each piano keystroke is given a 0.5% chance of being wrong. 

A wrong key is generated by randomly ascending/descending 

the pitch 𝑘~𝑁(0, 5). Figure 21 shows a snippet of the modified 

midi visualized as piano roll. The wrongly played key (circled in 

red) can be higher or lower in pitch comparing to the golden 

batch. 

 

Figure 21: A ten second snippet piano roll of the modified 

MIDI starting from the 5th seconds of the song. The musician 

made two mistakes, which are circled in red. The correct key 

is shown in blue and the incorrect key in orange. 

The outputted DCM of our golden batch algorithm of the same 

ten seconds snippet is shown in Figure 22.bottom. The DCM 

raised prominently when the wrong note is played. Although our 

method only shows the temporal location of the wrongly played 

note, it is trivial to identify the specific key which the musician 

wrongly played using an XOR operation given the temporal 

alignment (which is part of the gold batch’s output). A demo 

video, which shows the DCM being computed just-in-time as the 

musician plays the instrument, can be found in [21]. 

 

Figure 22: top) The golden batch for the same section of the 

song. middle) The same snippet shown in 0. bottom) The 

DCM computed by our method. The red lines indicate the 

alignment between the current batch and the golden batch. 

6  Conclusion 

In this work, we have introduced an online amnestic dynamic 

time warping for solving the golden batch problem. The proposed 

algorithm is online because it evaluates the correctness of each 

data point as it arrives, and it is amnestic as any deviation in the 

monitored data will only induce error locally, and if the deviation 

is corrected the error will decrease appropriately. We have 

showcased the utility of our algorithm by using it as an attention 

focusing algorithm, anomaly detection algorithm, and a 

personalized training and skill assessment on a set of diverse data 

sets from domains including: industry, transportation systems, and 

human handwriting. 

In this work, we have introduced an online amnestic dynamic 

time warping for solving the golden batch problem. The proposed 

algorithm is online because it evaluates the correctness of each 

data point as it arrives, and it is amnestic as any deviation in the 

monitored data will only induce error locally, and if the deviation 

is corrected the error will decrease appropriately. We have 

showcased the utility of our algorithm by using it as an attention 

focusing algorithm, anomaly detection algorithm, and a 

personalized training and skill assessment on a set of diverse data 
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sets from domains including: industry, transportation systems, and 

human handwriting. 
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